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Reliability

“Reliability is a measure of the stability or
consistency of test scores”

“Reliability refers to the extent to which a
scale produces consistent results”

“... overall consistency of a measure ... also
known as reproducibility or repeatability”
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Reliability

• social sciences ... consistency between raters
• medical science ... consistency of a test or measurement
• physical science ... “an experiment is reliable if it gives the same result when you
repeat the entire experiment” link

• ecology ... “ the probability that a system will provide a consistent level of
performance over a given unit of time”

• health care ... “The Institute for Healthcare Improvement uses a three-step model
for applying principles of reliability to health care systems”

Institute for Healthcare ImprovementHollander Lecture 2020 3

https://www.matrix.edu.au/the-beginners-guide-to-physics-practical-skills/physics-practical-skills-part-2-validity-reliability-accuracy-experiments/
http://www.ihi.org/education/IHIOpenSchool/Courses/Documents/CourseraDocuments/08_ReliabilityWhitePaper2004revJune06.pdf


System reliability

also Noether Award Lecture, several papers with Proschan, Samaniego...

The systems view: Reliability in a system of components is dependent on both the
functioning of the components, and the effect of component failures on the system

Is it helpful to view statistical science as a system?

If so, what are its components?
How do we ensure reliability of the components, and the system?
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Statistical systems

• social system: students; professional statisticians; academic researchers;
collaborations across disciplines

• reliability through, e.g. standards of professional ethics

• a data system – collection, preparation, analysis, conclusions, ...
• reliability through reproducibility

with the same data and the same analysis the numerical findings can be reproduced

• a scientific system – foundations, theory, applications, collaborations
• reliability through replicability

scientific findings can be verified in new experiments
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Reproducibility and Replicability

“A study is reproducible if you can take the original data and
the computer code used to analyze the data and reproduce
all of the numerical findings from the study”

“ Replicability : This is the act of repeating an entire study,
independently of the original investigator without the use of
original data (but generally using the same methods).”

Peng 2016
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Reproducibility and Replicability

“Reproducibility means computational reproducibility –
obtaining consistent computational results using the same
input data, computational steps, methods, code, and
conditions of analysis”

“Replicability means obtaining consistent results across
studies aimed at answering the same scientific question,
each of which has obtained its own data ”

Association for Computing Machinery; Version 1.1
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Reproducibility = Replicability ?

“The replication crisis (or replicability crisis or reproducibility
crisis ) is, as of 2020, an ongoing methodological crisis in
which it has been found that many scientific studies are
difficult or impossible to replicate or reproduce.”
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Statistical and data science



Statistical science and data science Jenny Bryan, RStudio

“It’s important that we build a really big tent” FieldsLive, 2015
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https://www.fields.utoronto.ca/video-archive/static/2015/02/318-4374/mergedvideo.ogv


Statistical science and data science HDSR 2.3
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Ten research challenge areas

1. understanding algorithms

2. causal reasoning

3. precious data

4. multiple heterogeneous data

5. inferring from noisy/incomplete data

6. trustworthy AI

7. computing systems for data-intensive apps

8. automating front end strategies

9. privacy

10. ethics

1. quantitative precision

2. fair and interpretable learning

3. postselection inference

4. statistical/computational efficiency

5. scalable/distributed inference

6. design for reproducibility/replicability

7. causal inference for big data

8. integrative analysis types/sources data

9. statistical analysis of privatized data

10. emerging data challenges

←−−−−−−−−−−−−−−−ethics−−−−−−−−−−−−−−−→
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“Build a big tent” Jenny Bryan, RStudio

“It’s important that we build a really big tent” FieldsLive, 2015
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... statistical science and data science Cox & Donnelly 2011

• start with a scientific question
• assess how data could shed light on this
• plan data collection
• consider of sources of variation and how careful planning can minimize their impact

• develop strategies for data analysis: modelling, computation, methods of analysis
• assess the properties of the methods and their impact on the question at hand

• communicate the results: accurately but not pessimistically

• visualization strategies, conveyance of uncertainties
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... statistical science and data science

• data acquisition
• making data trustable and usable
• management of data

• modelling and analysis

• dissemination and visualization
• data and analysis preservation

!"""""""""""""""""""""""""#

security , privacy , ethics , policy , impact
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... statistical science and data science

• scientific question, data
• plan data collection
• sources of variation

• data analysis: modelling, computation,
methods of analysis

• properties of the methods and their
impact, replicability

• communicate
• visualization strategies, conveyance of
uncertainties

• data acquisition
• making data trustable and usable
• management of data

• modelling and analysis
• computational efficiency

• data and analysis preservation ,
reproducibility

• dissemination and visualization

security , privacy , ethics , policy , impact
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Examples



Statistics in the News a hard constraint
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Examples

Example 1



Example 1: Social Science HDSR 2.3

• Prediction, machine learning, and individual lives:
an interview with Matthew Salganik

• Measuring the predictability of life outcomes
with a scientific mass collaboration

• An introduction to the special collection on
Fragile Families Challenge
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Fragile Familes Data Salganik et al., PNAS

• Fragile Families and Wellbeing Study: longitudinal survey of
∼ 4700 births; 3600 non-marital

• stratified random sample of all US cities with 200,000 or more people
• random samples of hospitals within cities
• random samples of married and unmarried births within hospitals

Reichman et al., 2001
https://fragilefamilies.princeton.edu/documentation

• six waves of data collection: birth, ages 1, 3, 5 9, 15
• each wave had a number of data collection modules
• each module had a number of sections/topics
• in-home assessments in waves 3, 4 and 5 ages 3, 5, 9
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Fragile Familes Challenge Salganik et al., PNAS

• use data from waves 1–5 background data
• and some data from wave 6 labelled data
• to predict outcomes on remaining data from wave 6 (age 15) holdout data
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... the Challenge Salganik et al., PNAS

• predict any or all of 6 outcome variables 3 continuous, 3 binary
• evaluated on relative mean-squared-error on leaderboard data
• final evaluations on holdout data at the end of the challenge 160 teams

Hollander Lecture 2020 20



... the Results Salganik et al., PNAS

• “even the best predictions were not very accurate

• “the best submissions were only somewhat better than ... a simple benchmark
model that used linear ... or logistic regression with four predictor variables
selected by a domain expert and a measure of the outcome [from wave 5]

• “teams used a variety of different data processing
and statistical learning techniques

• “despite diversity in techniques, the resulting predictions were quite similar

• “within each outcome, squared prediction error was strongly associated with the
family being predicted and weakly associated with the technique”
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... the Results Salganik et al., PNAS Supp. Fig S6
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... the Conclusions Salganik et al., PNAS

• predictive models are used in policy settings Chouldechova et al 2018

• theory needed to address the difficulty of prediction weather, stock market

• study can serve as a template for similar challenges code and predictions open source

• methodology development
• much missing data, some missing by design
• distribution of responses quite skewed
• “bottom up” vs “top down” approaches
• binary vs continuous predictions
• ...
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... the Conclusions salganik et al., PNAS Supp. Fig S2
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More Information Socius special issue

https://doi.org/10.1177/2378023119871580
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Special Collection: Fragile Families Challenge

Introduction
Social scientists studying the life course have described 
social patterns, theorized factors that shape outcomes, and 
estimated the effects of specific interventions. However, it is 
unclear how much the knowledge developed from this prior 
research enables researchers and policymakers to accurately 
predict life outcomes. Although social scientists have gener-
ally focused on questions about explanation rather than ques-
tions about prediction (Breiman 2001; Hofman, Sharma, and 
Watts 2017; Shmueli 2010; Yarkoni and Westfall 2017), 
questions about prediction are important for three reasons.

First, there is growing interest in using predictive models to 
target assistance to children and families at risk (Kleinberg 
et al. 2015). For example, policymakers in Allegheny County, 
Pennsylvania, are currently using predictive models to assist 
case workers in deciding whether a maltreatment referral about 
a child is of sufficient concern to warrant an in-person investi-
gation (Chouldechova et al. 2018; Eubanks 2018). Although 
using predictive models in policy settings raises important 
questions about data collection (Barocas and Selbst 2016; 
Lakkaraju et al. 2017), fairness (Courtland 2018), and causal 
inference (Athey 2018), the use of predictive models in policy 
settings is nevertheless likely to accelerate. Basic scientific 
knowledge about the predictability of life outcomes can serve 
as a guide for future policymaking around these models.

Second, the predictability of a person’s life outcomes is a 
measure of social rigidity (Blau and Duncan 1967): the 

degree to which future outcomes can be predicted by family 
characteristics or past experience. Measures of rigidity, such 
as the relationship between a father’s and son’s occupation, 
have been the subject of extensive sociological research 
(Torche 2015). Although this research has tended to focus on 
statistical association, these questions can also be framed in 
terms of prediction: Given certain background information 
about a person, how well can we predict what will happen to 
them at a later time?

Third, efforts to improve predictive performance can spark 
developments in theory, methods, and data collection, even in 
settings where prediction is not of direct scientific interest. The 
finding that some important life outcomes are not very predict-
able from the kinds of data that social scientists normally collect 
could lead to numerous improvements. For example, 
researchers could theorize about social processes not currently 
being considered and develop new methods to better utilize 

871580 SRDXXX10.1177/2378023119871580SociusSalganik et al.
research-article2019

1Princeton University, Princeton, NJ, USA

Minor updates have been made since first publication: Salganik et al. 2020 
was previously cited as Fragile Families Team 2020; Figure 6 has been 
updated to show all y-axes start at 0.00 for reader clarity and the graph 
for Layoff, Leaderboard (missing excluded) has been corrected; and the 
grant number from the National Science Foundation has been corrected.

Corresponding Author:
Matthew J. Salganik, Department of Sociology, Princeton University, 
Wallace Hall, Princeton, NJ 08544, USA. 
Email: mjs3@princeton.edu

Introduction to the Special Collection on 
the Fragile Families Challenge

Matthew J. Salganik1, Ian Lundberg1, Alexander T. Kindel1,  
and Sara McLanahan1

Abstract
The Fragile Families Challenge is a scientific mass collaboration designed to measure and understand the predictability 
of life trajectories. Participants in the Challenge created predictive models of six life outcomes using data from the 
Fragile Families and Child Wellbeing Study, a high-quality birth cohort study. This Special Collection includes 12 articles 
describing participants’ approaches to predicting these six outcomes as well as 3 articles describing methodological and 
procedural insights from running the Challenge. This introduction will help readers interpret the individual articles and 
help researchers interested in running future projects similar to the Fragile Families Challenge.

Keywords
life course, prediction, mass collaboration, common task method, machine learningHollander Lecture 2020 25
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Examples

Example 2



Example 2: Physical Science Globe & Mail, Oct 9 2020

Hollander Lecture 2020 26



Nitrous oxide Science Daily
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Nitrous oxide University of East Anglia
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Nitrous oxide Auburn University
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Nitrous oxide In the News
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Nitrous oxide emissions Tian et al. Nature Oct 7

248 | Nature | Vol 586 | 8 October 2020

Article

A comprehensive quantification of global 
nitrous oxide sources and sinks

Hanqin Tian1ಞᅒ, Rongting Xu1, Josep G. Canadell2, Rona L. Thompson3, Wilfried Winiwarter4,5, 
Parvadha Suntharalingam6, Eric A. Davidson7, Philippe Ciais8, Robert B. Jackson9,10,11,  
Greet Janssens-Maenhout12,13, Michael J. Prather14, Pierre Regnier15, Naiqing Pan1,16,  
Shufen Pan1, Glen P. Peters17, Hao Shi1, Francesco N. Tubiello18, Sönke Zaehle19, Feng Zhou20, 
Almut Arneth21, Gianna Battaglia22, Sarah Berthet23, Laurent Bopp24, Alexander F. Bouwman25,26,27,  
Erik T. Buitenhuis6,28, Jinfeng Chang8,29, Martyn P. Chipperfield30,31, Shree R. S. Dangal32, 
Edward Dlugokencky33, James W. Elkins33, Bradley D. Eyre34, Bojie Fu16,35, Bradley Hall33, 
Akihiko Ito36, Fortunat Joos22, Paul B. Krummel37, Angela Landolfi38,39, Goulven G. Laruelle15, 
Ronny Lauerwald8,15,40, Wei Li8,41, Sebastian Lienert22, Taylor Maavara42, Michael MacLeod43, 
Dylan B. Millet44, Stefan Olin45, Prabir K. Patra46,47, Ronald G. Prinn48, Peter A. Raymond42, 
Daniel J. Ruiz14, Guido R. van der Werf49, Nicolas Vuichard8, Junjie Wang27, Ray F. Weiss50, 
Kelley C. Wells44, Chris Wilson30,31, Jia Yang51 & Yuanzhi Yao1

Nitrous oxide (N2O), like carbon dioxide, is a long-lived greenhouse gas that accumulates  
in the atmosphere. Over the past 150 years, increasing atmospheric N2O concentrations  
have contributed to stratospheric ozone depletion1 and climate change2, with the 
current rate of increase estimated at 2 per cent per decade. Existing national inventories  
do not provide a full picture of N2O emissions, owing to their omission of natural 
sources and limitations in methodology for attributing anthropogenic sources. Here we 
present a global N2O inventory that incorporates both natural and anthropogenic sources 
and accounts for the interaction between nitrogen additions and the biochemical 
processes that control N2O emissions. We use bottom-up (inventory, statistical 
extrapolation of !ux measurements, process-based land and ocean modelling) and 
top-down (atmospheric inversion) approaches to provide a comprehensive 
quanti"cation of global N2O sources and sinks resulting from 21 natural and human 
sectors between 1980 and 2016. Global N2O emissions were 17.0 (minimum–maximum 
estimates: 12.2–23.5) teragrams of nitrogen per year (bottom-up) and 16.9 (15.9–17.7) 
teragrams of nitrogen per year (top-down) between 2007 and 2016. Global human-induced  
emissions, which are dominated by nitrogen additions to croplands, increased by 30% 
over the past four decades to 7.3 (4.2–11.4) teragrams of nitrogen per year. This 
increase was mainly responsible for the growth in the atmospheric burden. Our 
"ndings point to growing N2O emissions in emerging economies—particularly Brazil, 
China and India. Analysis of process-based model estimates reveals an emerging  
N2O–climate feedback resulting from interactions between nitrogen additions and 
climate change. The recent growth in N2O emissions exceeds some of the highest 
projected emission scenarios3,4, underscoring the urgency to mitigate N2O emissions.

Nitrous oxide (N2O) is a long-lived stratospheric ozone-depleting 
substance and greenhouse gas with a current atmospheric lifetime 
of 116 ± 9 years1. The concentration of atmospheric N2O has increased 
by more than 20% from 270 parts per billion (ppb) in 1750 to 331 ppb 
in 2018 (Extended Data Fig. 1), with the fastest growth observed in 
the past five decades5,6. Two key biochemical processes—nitrification 
and denitrification—control N2O production in both terrestrial and 
aquatic ecosystems and are regulated by multiple environmental and 
biological factors including temperature, water and oxygen levels, 

acidity, substrate availability7 (which is linked to nitrogen fertilizer 
use and livestock manure management) and recycling8–10. In the com-
ing decades, N2O emissions are expected to continue to increase as a 
result of the growing demand for food, feed, fibre and energy, and an 
increase in sources from waste generation and industrial processes4,11,12. 
Since 1990, anthropogenic N2O emissions have been reported annually 
by Annex I Parties to the United Nations Framework Convention on  
Climate Change (UNFCCC). More recently, over 190 national signatories 
to the Paris Agreement have been required to report biannually their 

https://doi.org/10.1038/s41586-020-2780-0
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 Check for updates

A list of affiliations appears at the end of the paper.
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... Nitrous oxide emissions Tian et al. Nature Oct 7

• “Dr. Tian said the new result is the culmination of a five-year effort
• “ brought together experts in ocean, forest, soil and fresh water systems,
among others,

• “ The biggest surprise is that the rate of increase is higher than other emission
scenarios that have been developed by the IPCC, Pr. Basu, Waterloo via G&M

• “ constructed a total of 43 flux estimates, including 30 using bottom-up approaches,
5 using top-down approaches, and 8 other estimates using observation and
modelling approaches Nature, §1

• data synthesis from terrestial biosphere models, global ocean biogeochemistry
models, dynamic land ecosystem model, various databases (FAO), published
estimates of N2O from the literature, ...

• atmospheric estimates from other simulations and publications, e.g. NOAA

Hollander Lecture 2020 32



... Nitrous oxide emissions Tian et al. Nature Oct 7
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... Nitrous oxide emissions Tian et al. Nature Oct 7
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... Nitrous oxide emissions Tian et al. Nature Oct 7
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Statistics and Data Science N2O quantification

global climate models, terrestial biosphere models, observational data bases,
atmospheric physics models, ... multiscale

statistical methods for sanity checks, e.g. N20 interaction with global warming
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Ten research challenge areas

1. understanding algorithms

2. causal reasoning

3. precious data

4. multiple heterogeneous data

5. inferring from noisy/incomplete data

6. trustworthy AI

7. computing systems for data-intensive

8. automating front end strategies

9. privacy

10. ethics

1. quantitative precision

2. fair and interpretable learning

3. postselection inference

4. statistical/computational efficiency

5. scalable/distributed inference

6. design for reproducibility/replicability

7. causal inference for big data

8. integrative analysis types/sources data

9. statistical analysis of privatized data

10. emerging data challenges

←−−−−−−−−−−−−−−−ethics−−−−−−−−−−−−−−−→
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Statistical Theory



Nonparametric methods Hollander and Wolfe

• nonparametric Bayesian inference Dirichlet process mixtures, Indian buffet processes, ...

• concentration inequalities for posterior summaries means, modes, ...

• consistency, contraction rates, infinite-dimensional Bernstein-vonMises theorems

• sequence model Yi ∼ N(θi, 1), i = 1, . . . ,n high-dimensional regression
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Nitrous Oxide Tian et al Nature
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Nitrous Oxide Tian et al Nature

Methods
Terminology
This study provides an estimation of the global N2O budget considering 
all possible sources and all global change processes that can perturb 
the budget. A total of 18 sources and three sinks of N2O are identified 
and grouped into six categories (Fig. 1, Table 1): (1) natural fluxes in the 
absence of climate change and anthropogenic disturbances including 
soil emissions, surface sink, ocean emissions, lightning and atmos-
pheric production, and natural emission from inland waters, estuar-
ies, coastal zones (inland and coastal waters); (2) perturbed fluxes 
from climate/CO2/land cover change including the effect of CO2, the 
effect of climate, the post-deforestation pulse effect, and the long-term 
effect of reduced mature forest area; (3) direct emissions from nitrogen 
additions in the agricultural sector (‘agriculture’) including emissions 
from direct application of synthetic nitrogen fertilizers and manure 
(henceforth ‘direct soil emissions’), manure left on pasture, manure 
management and aquaculture; (4) indirect emissions from anthropo-
genic nitrogen additions including atmospheric nitrogen deposition 
(NDEP) on land, atmospheric NDEP on ocean, and effects of anthropo-
genic loads of reactive nitrogen in inland waters, estuaries and coastal 
zones; (5) other direct anthropogenic sources including fossil fuel and 
industry, waste and waste water, and biomass burning; and (6) two 
estimates of stratospheric sinks obtained from atmospheric chemistry 
transport models and observations, and one tropospheric sink (Table 1, 
Extended Data Fig. 2).

For the purpose of compiling national greenhouse-gas inventories 
for reporting data for each country to the climate convention, our 
anthropogenic N2O emission categories are aligned with those used 
in UNFCCC reporting and IPCC 2006 methodologies (Supplementary 
Table 14). We also provide a detailed comparison of our methodol-
ogy and quantification with that of the IPCC assessment report 5 (see  
Supplementary Information section 4, Supplementary Table 15).

Data synthesis
We consider global N2O emission from land and ocean consisting of 
natural fluxes and anthropogenic emissions estimated from bottom-up 
and top-down approaches; however, the top-down approach cannot 
separate natural and anthropogenic sources.

‘Natural soil baseline’ emissions were obtained from six terres-
trial biosphere models (Global N2O Model Intercomparison Project 
(NMIP)16, Supplementary Tables 16, 17) and reflect a situation without 
consideration of land use change (for example, deforestation) and 
without consideration of indirect anthropogenic effects via global 
change (that is, climate, increased CO2 and atmospheric nitrogen 
deposition). Bottom-up oceanic N2O emissions were based on an 
inter-comparison of five global ocean biogeochemistry models (Sup-
plementary Table 18). The natural emission from ‘Inland water, estuar-
ies, coastal zones’ includes coastal upwelling50 and inland and coastal 
waters that were obtained from ref. 36, ref. 35 and ref. 51. Because the data 
(rivers, reservoirs, and estuaries) provided in ref. 35 and ref. 51 are for the 
year 2000, we assume that these values are constant during 1980–2016. 
Ref. 36 provided annual riverine N2O emissions using the DLEM model 
during the same period. Here, we averaged estimates from ref. 36 with 
those from ref. 35. In addition, we estimated N2O emissions from global 
and regional reservoirs in the 2000s, and averaged their estimates 
with those from ref. 35 to represent emissions from reservoirs during 
1980–2016. The estimate for global and regional estuaries and lakes 
is still based on the long-term averaged values provided by ref. 35 and  
ref. 51, respectively. We considered the riverine emissions in the year 
1900 as equivalent to the natural emission for the DLEM estimate assum-
ing that the nitrogen load from land was negligible in that period52. We 
quantified the contribution of natural sources to total emission from 
reservoirs, lakes and estuaries at 44% (36%–52%), with consideration of 
all nitrogen inputs (that is, inorganic, organic, dissolved and particulate 

forms). We combined the estimate from lightning with that from atmos-
pheric production into an integrated category denoted ‘Lightning 
and atmospheric production’. We make a simplification by consider-
ing the category ‘Lightning and atmospheric production’ as purely 
natural; however, atmospheric production is affected to some extent 
by anthropogenic activities through enhancing the concentrations of 
the reactive species NH2 and NO2. This category is in any case very small 
and the anthropogenic enhancement effect is uncertain. Lightning 
produces NOx, the median estimate of which is 5 Tg N yr−1 (ref. 53). We 
assumed an emission factor of 1% (ref. 54) and a global estimate of 0.05 
(0.02–0.09) Tg N yr−1 from lightning. Atmospheric production of N2O 
results from the reaction of NH2 with NO2 (refs. 55,56), N with NO2, and 
from the oxidation of N2 by O(1D)57, all of which constitute an estimated 
source of 0.3 (0.2–1.1) Tg N yr−1. The estimate of the ‘Surface sink’ was 
obtained from ref. 58 and ref. 59.

The anthropogenic sources include four sub-sectors:
(a) Agriculture. This consists of four components: ‘Direct soil emis-

sions’, ‘Manure left on pasture’, ‘Manure management’ and ‘Aquacul-
ture’. Data for ‘Direct soil emissions’ were obtained as the ensemble 
mean of N2O emissions from an average of three inventories (EDGAR 
v4.3.2, FAOSTAT and GAINS), the SRNM/DLEM models and the NMIP/
DLEM models. The statistical model SRNM covers only cropland N2O 
emissions, the same as the NMIP. Thus, we add the DLEM-based esti-
mate of pasture N2O emissions into the two estimates in cropland to 
represent direct agricultural soil emissions (that is, SRNM/DLEM or 
NMIP/DLEM). The ‘Manure left on pasture’ and ‘Manure management’ 
emissions are the ensemble mean of the values from the EDGAR v4.3.2, 
FAOSTAT and GAINS databases. Global nitrogen flows (that is, fish feed 
intake, fish harvest and waste) in freshwater and marine aquaculture 
were obtained from ref. 30 and refs. 60,61 based on a nutrient budget 
model for the period 1980–2016. We then calculated global aquacul-
ture N2O emissions through considering 1.8% loss of nitrogen waste 
in aquaculture, the same emission factor used in ref. 62 and ref. 31. The 
uncertainty range of the emission factor is from 0.5% (ref.14) to 5%  
(ref. 63), the same range used in the UNEP report9. The ‘Aquaculture’ 
emission for the period 2007–2016 was estimated through synthesizing 
multiple sources of data from ref. 62 in 2009, the FAO report31 in 2013 
and our calculations. The estimate of aquaculture N2O emission before 
2009 was from our calculations only.

The estimated direct emissions from agriculture have increased 
from 2.6 (1.8–4.1) Tg N yr−1 in the 1980s to 3.8 (2.5–5.8) Tg N yr−1 over the 
recent decade (2007–2016, Table 1). Specifically, direct soil emission 
from the application of fertilizers is the major source and increased at a 
rate of 0.27 ± 0.01 Tg N yr−1 per decade (P < 0.05; Table 1). Compared with 
the three global inventories (FAOSTAT, EDGAR v4.3.2, and GAINS), the 
estimates from process-based models (NMIP/DLEM15,16) and a statistical 
model (SRNM)/DLEM15,17 exhibited a faster increase (Extended Data 
Fig. 4a). Over the past four decades, we also found a small but signifi-
cant increase in emissions from livestock manure (that is, manure left 
on pasture and manure management) at a rate of 0.1 ± 0.01 Tg N yr−1 per 
decade (P < 0.05; Extended Data Fig. 4b-c). Meanwhile, global aquacul-
ture N2O emissions increased tenfold, however, this flux remains the 
smallest term in the global budget (Extended Data Fig. 4d).

(b) Other direct anthropogenic sources. This includes ‘Fossil fuel and 
industry’, ‘Waste and waste water’, and ‘Biomass burning’. Both ‘Fossil 
fuel and industry’ and ‘Waste and waste water’ are the ensemble means 
of the values from EDGAR v4.3.2 and GAINS databases. The ‘Biomass 
burning’ emission is the ensemble mean of values from FAOSTAT, DLEM 
and GFED4s databases.

Emissions from a combination of fossil fuel and industry, waste and 
waste water, and biomass burning increased from 1.8 (1.6–2.1) Tg N yr−1 
in the 1980s to 1.9 (1.6–2.3) Tg N yr−1 over the period 2007–2016 (Table 1). 
The waste and waste water emission showed a continuous increase at a 
rate of 0.04 ± 0.01 Tg N yr−1 per decade (P < 0.05) (Extended Data Fig. 5c). 
Emissions from biomass burning, estimated on the basis of three data 
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Nitrous Oxide Tian et al Nature
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The role of theory R & Cox, 2013

• how to get from data to conclusions

• with generalizable strategies

• what principles do we use to develop these strategies

• how are these strategies to be evaluated efficiency, precision

• a long history of the subject; using probability to both develop statistical methods
and to evaluate their performance

Bayes, Laplace, Gauss; Student, Fisher, Neyman, Pearson, Jeffreys, ...

• leading to confidence intervals, p-values, estimates and standard errors, etc.
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Those pesky p-values
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Those pesky p-values

• science is a process

• learning is incremental

• probability expresses uncertainty

• either epistemically or empirically

• for scientific advances, empirical behaviour of procedures is key

• for decision-making, personal probabilities have an important role
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Ten Simple Rules Kass et al., 2016
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Three Rs

Thank you!
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Three Rs

Thank you!
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