Vertical and Horizontal Functional Principal Component Analysis using SRSF
moduleauthor:: Derek Tucker <dtucker@stat.fsu.edu>
This function calculates horizontal functional principal component analysis on aligned data
| Parameters: | |
|---|---|
| Return type: | tuple of numpy ndarray |
| Return q_pca: | srsf principal directions |
| Return f_pca: | functional principal directions |
| Return latent: | latent values |
| Return coef: | coefficients |
| Return U: | eigenvectors |
This function calculates vertical functional principal component analysis on aligned data
| Parameters: |
|
|---|---|
| Return type: | tuple of numpy ndarray |
| Return q_pca: | srsf principal directions |
| Return f_pca: | functional principal directions |
| Return latent: | latent values |
| Return coef: | coefficients |
| Return U: | eigenvectors |