Posterior consistency in conditional distribution estimation

Debdeep Pati, David B. Dunson, Surya T. Tokdar

Department of Statistical Science, Duke University
BOX 90251, Old Chemistry Building
Durham, NC 27708

Abstract

A wide variety of priors have been proposed for nonparametric Bayesian estimation of conditional distributions, and there is a clear need for theorems providing conditions on the prior for large support, as well as posterior consistency. Estimation of an uncountable collection of conditional distributions across different regions of the predictor space is a challenging problem, which differs in some important ways from density and mean regression estimation problems. Defining various topologies on the space of conditional distributions, we provide sufficient conditions for posterior consistency focusing on a broad class of priors formulated as predictor-dependent mixtures of Gaussian kernels. This theory is illustrated by showing that the conditions are satisfied for a class of generalized stick-breaking process mixtures in which the stick-breaking lengths are monotone, differentiable functions of a continuous stochastic process. We also provide a set of sufficient conditions for the case where stick-breaking lengths are predictor independent, such as those arising from a fixed Dirichlet process prior.

Keywords: Asymptotics, Bayesian nonparametrics, Density regression, Dependent Dirichlet process, Large support, Probit stick-breaking process

2000 MSC: 62G07, 62G20, 60K35

1. Introduction

There is a rich literature on Bayesian methods for density estimation using mixture models of the form

$$y_i \sim f(\theta_i), \quad \theta_i \sim P, \quad P \sim \Pi,$$

(1.1)
where $f(\cdot)$ is a parametric density and P is an unknown mixing distribution assigned a prior Π. The most common choice of Π is the Dirichlet process prior, first introduced by [1, 2]. [3, 4] used upper bracketing and L_1-metric entropy bounds respectively to derive sufficient conditions on the prior on f and the true data generating f for obtaining strong posterior consistency in Bayesian density estimation. [4] also provided sufficient conditions for posterior consistency in univariate density estimation using Dirichlet process location mixtures of normals. [5] significantly relaxed their conditions in a Dirichlet process location-scale mixture of normals setting, requiring existence of only weak moments of the true f. [6, 7] provided rates of convergence for Bayesian univariate density estimation using a Dirichlet process mixture of normals. [8] provided conditions for strong consistency of kernel mixture priors for densities on compact metric spaces and manifolds.

Recent literature has focused on generalizing model (1.1) to the density regression setting in which the entire conditional distribution of y given x changes flexibly with predictors. Bayesian density regression views the entire conditional density $f(y \mid x)$ as a function valued parameter and allows its center, spread, skewness, modality and other such features to vary with x. For data $\{(y_i, x_i), i = 1, \ldots, n\}$ let

$$y_i \mid x_i \sim f(\cdot \mid x_i), \quad \{f(\cdot \mid x), x \in X\} \sim \Pi_X,$$

(1.2)

where X is the predictor space and Π_X is a prior for the class of conditional densities $\{f_x, x \in X\}$ indexed by the predictors. Refer, for example, to Müller et al. [9], Griffin and Steel [10, 11], Dunson et al. [12], Dunson and Park [13], Chung and Dunson [14] and Tokdar et al. [15] among others.

The primary focus of this recent development has been mixture models of the form

$$f(y \mid x) = \sum_{h=1}^{\infty} \pi_h(x) \phi \left(\frac{y - \mu_h(x)}{\sigma_h} \right),$$

(1.3)

where ϕ is the standard normal density, $\{\pi_h(x), h = 1, 2, \ldots\}$ are predictor-dependent probability weights that sum to one almost surely for each $x \in X$, and $(\mu_h, \sigma_h) \sim G_0$ independently, with G_0 a base probability measure on $\mathcal{F}_X \times \mathbb{R}^+$, $\mathcal{F}_X \subset X^\mathbb{R}$, the space of all $X \rightarrow \mathbb{R}$ functions. However, there is a dearth of results on support properties of prior distributions for conditional distributions and on general theorems providing conditions for weak and strong posterior consistency. To our knowledge, only [16] have considered formalizing the notions of weak and KL-support for dependent
stick-breaking processes. We focus on a broad class of generalized stick-breaking processes, which express the probability weights $\pi_h(x)$ in stick-breaking form, with the stick lengths constructed through mapping continuous stochastic processes to the unit interval using a monotone differentiable link function. This class includes dependent Dirichlet processes [17] as a special case.

To our knowledge, only a few papers have considered posterior consistency in conditional density estimation. [15] considers posterior consistency in estimating conditional distributions focusing exclusively on logistic Gaussian process priors [18]. Such priors have beautiful theoretical properties but lack the computational simplicity of the countable mixture priors in (1.3). In addition, (1.3) has the appealing side effect of inducing predictor-dependent clustering, which is often of interest in itself and is an aid to interpretation and inferences. [19] considers posterior consistency in conditional distribution estimation through a limited information approach by approximating the likelihood by the quantiles of the true distribution. [20, 21] provide sufficient conditions for showing posterior consistency in estimating an autoregressive conditional density and a transition density rather than regression with respect to another covariate.

In this article, focusing on model (1.3), we initially provide sufficient conditions on the prior and true data-generating model under which the prior leads to weak and various types of strong posterior consistency. In this context, we first define notions of weak and L_1-integrated neighborhoods. We then show that the sufficient conditions are satisfied for a novel class of generalized stick-breaking priors that construct the stick-breaking lengths through mapping continuous stochastic processes to the unit interval using a monotone differentiable link function. The theory is illustrated through application to a model relying on probit transformations of Gaussian processes, an approach related to the probit stick-breaking process of [14] and [22]. We also considered Gaussian mixtures of fixed-π dependent processes [17, 23].

[24] showed posterior consistency in conditional density estimation using kernel stick breaking process mixtures of Gaussians in a very recent unpublished article. They approximated a conditional density by a smooth mixture of linear regressions as in [25] to demonstrate the KL property. In this paper, we have shown KL support using a more direct approach of approximating the true density by a kernel mixture of a compactly supported conditional measure.

The fundamental contributions of this article is developing a novel class of prior distributions which has large support in the space of conditional
densities and also leads to a consistent posterior. In doing so, a key technical contribution is the development of a novel method of constructing a sieve for the proposed class of priors. It has been noted by [26] that the usual method of constructing a sieve by controlling prior probabilities is unable to lead to a consistency theorem in the multivariate case. This is because of the explosion of the L_1-metric entropy with increasing dimension. They developed a technique specific to the Dirichlet process in the multivariate case for showing weak and strong posterior consistency. The proposed sieve\footnote{A similar sieve appears in [24] with a citation to an earlier draft of our paper.} avoids the pitfall mentioned by [26] in showing consistency using multivariate mixtures. Our sieve construction has been applied to a variety of settings for studying posterior consistency and convergence rates - adaptive Bayesian multivariate density estimation [27, 28], sparse multivariate mixtures of factor analyzers [29] and probability tensor decomposed models for categorical data analysis [30].

2. Notations

Throughout the paper, Lebesgue measure on \mathbb{R} or \mathbb{R}^p is denoted by λ and the set of natural numbers by \mathbb{N}. The supremum and the L_1-norms are denoted by $\|\cdot\|_{\infty}$ and $\|\cdot\|_1$ respectively. The indicator function of a set B is denoted by 1_B. Let $L_p(\nu, M)$ denote the space of real valued measurable functions defined on M with ν-integrable pth absolute power. For two density functions f, g, the Kullback-Leibler divergence is given by $K(f, g) = \int \log(f/g) f d\lambda$. A ball of radius r with centre x_0 relative to the metric d is defined as $B(x_0, r; d)$. The diameter of a bounded metric space M relative to a metric d is defined to be $\sup\{d(x, y) : x, y \in M\}$. The ϵ-covering number $N(\epsilon, M, d)$ of a semi-metric space M relative to the semi-metric d is the minimal number of balls of radius ϵ needed to cover M. The logarithm of the covering number is referred to as the entropy. “\(\lesssim\)” stands for inequality up to a constant multiple or if the constant multiple is irrelevant to the given situation. δ_0 stands for a distribution degenerate at 0 and $\text{supp}(\nu)$ for the support of a measure ν.

3. Gaussian process priors

In this section, we first recall the definition of the RKHS of a Gaussian process prior. [31] reviews facts that are relevant to the present applications.
A Borel measurable random element W with values in a separable Banach space $(\mathbb{B}, \|\cdot\|)$ is called Gaussian if the random variable b^*W is normally distributed for any element $b^* \in \mathbb{B}^*$, the dual space of \mathbb{B}. Recall that in general, the reproducing kernel Hilbert space (RKHS) \mathbb{H} attached to a zero-mean Gaussian process W is defined as the completion of the linear space of functions $t \mapsto EW(t)H$ relative to the inner product

$$\langle EW(\cdot)H_1; EW(\cdot)H_2 \rangle_\mathbb{H} = E H_1H_2,$$

where H, H_1 and H_2 are finite linear combinations of the form $\sum_i a_iW(s_i)$ with $a_i \in \mathbb{R}$ and s_i in the index set of W. The RKHS can be viewed as a subset of \mathbb{B} and the RKHS norm $\|\cdot\|_\mathbb{H}$ is stronger than the Banach space norm $\|\cdot\|$.

4. Conditional density estimation

In this section, we will define the space of conditional densities and construct a prior on this space. It is first necessary to generalize the topologies to allow appropriate neighborhoods to be constructed around an uncountable collection of conditional densities indexed by predictors. With such neighborhoods in place, we then state our main theorems providing sufficient conditions under which various modes of posterior consistency hold for a broad class of predictor-dependent mixtures of Gaussian kernels.

Let $\mathcal{Y} = \mathbb{R}$ be the response space and \mathcal{X} be the covariate space which is a compact subset of \mathbb{R}^p. Unless otherwise stated, we will assume $\mathcal{X} = [0, 1]^p$ without loss of generality. Let \mathcal{F} denote the space of densities on $\mathcal{X} \times \mathcal{Y}$ w.r.t. the Lebesgue measure and \mathcal{F}_d denote a subset of the space of conditional densities satisfying,

$$\mathcal{F}_d = \left\{ g : \mathcal{X} \times \mathcal{Y} \to (0, \infty), \int_y g(x, y)dy = 1 \forall x \in \mathcal{X}, x \mapsto g(x, \cdot) \text{ continuous as a function from } \mathcal{X} \to L_1(\lambda, \mathcal{Y}) \right\}.$$

Suppose y_i is observed independently given the covariates $x_i, i = 1, 2, \ldots$ which are drawn independently from a probability distribution Q on \mathcal{X}. Assume that Q admits a density q with respect to the Lebesgue measure.

If we define $h(x, y) = q(x)f(y \mid x)$ and $h_0(x, y) = q(x)f_0(y \mid x)$ then $h, h_0 \in \mathcal{F}$. Throughout the paper, h_0 is assumed to be a fixed density in \mathcal{F} which we alternatively refer to as the true data generating density and $\{f_0(\cdot \mid x), x \in \mathcal{X}\}$ is referred to as the true conditional density. The density
$q(x)$ will be needed only for theoretical investigation. In practice, we do not need to know it or learn it from the data.

We propose to induce a prior P_X on the space of conditional densities through a prior P_X for a collection of mixing measures $G_X = \{G_x, x \in X\}$ using the following predictor-dependent mixture of kernels

$$f(y \mid x) = \int \frac{1}{\sigma} \phi\left(\frac{y - \mu}{\sigma}\right) dG_x(\psi), \quad (4.1)$$

where $\psi = (\mu, \sigma)$, and

$$G_x = \sum_{h=1}^{\infty} \pi_h(x) \delta_{(\mu_h(x), \sigma_h)}, \quad (\mu_h, \sigma_h) \sim G_0, \quad (4.2)$$

where $\pi_h(x) \geq 0$ are random functions of x such that $\sum_{h=1}^{\infty} \pi_h(x) = 1$ a.s. for each fixed $x \in X$. $\{\mu_h(x), x \in X\}_{h=1}^{\infty}$ are i.i.d. realizations of a real valued stochastic process, i.e., G_0 is a probability distribution over $F_X \times \mathbb{R}^+$, where $F_X \subset X^\mathbb{R}$, $X^\mathbb{R}$ being the space of functions from X to \mathbb{R}. Hence for each $x \in X$, G_x is a random probability measure over the measurable Polish space $(\mathbb{R} \times \mathbb{R}^+, B(\mathbb{R} \times \mathbb{R}^+))$. We are interested in Bayesian posterior consistency for a broad class of predictor-dependent stick-breaking mixtures including the following two important special cases.

4.1. Predictor dependent countable mixtures of Gaussian linear regressions

We define the predictor dependent countable mixtures of Gaussian linear regressions (MGLR$_X$) as

$$f(y \mid x) = \int \frac{1}{\sigma} \phi\left(\frac{y - x' \beta}{\sigma}\right) dG_x(\beta, \sigma),$$

and

$$G_x = \sum_{h=1}^{\infty} \pi_h(x) \delta_{(\beta_h, \sigma_h)}, \quad (\beta_h, \sigma_h) \sim G_0 \quad (4.3)$$

where $\pi_h(x) \geq 0$ are random functions of x such that $\sum_{h=1}^{\infty} \pi_h(x) = 1$ a.s. for each fixed $x \in X$ and $G_0 = G_{0,\beta} \times G_{0,\sigma}$ is a probability distribution on $\mathbb{R}^p \times \mathbb{R}^+$ where $G_{0,\beta}$ and $G_{0,\sigma}$ are probability distributions on \mathbb{R}^p and \mathbb{R}^+ respectively. For a particular choice of $\pi_h(x)$’s, we obtain the probit stick-breaking mixtures of Gaussians which have been previously applied by [14, 22, 32]. The latter two articles considered probit transformations of Gaussian processes in constructing the stick-breaking weights.
4.2. Gaussian mixtures of fixed-π dependent processes

In (4.1), set \(G_x\) as in (4.2) with \(\pi_h(x) \equiv \pi_h\) for all \(x \in \mathcal{X}\) where \(\pi_h \geq 0\) are random probability weights \(\sum_{h=1}^{\infty} \pi_h = 1\) a.s. and \(\{\mu_h(x), x \in \mathcal{X}\}_{h=1}^{\infty}\) are as in (4.2). Examples include fixed-π dependent Dirichlet process mixtures of Gaussians [17]. Versions of the fixed π-DDP have been applied to ANOVA [23], survival analysis [33, 34], spatial modeling [35], and many more.

5. Notions of neighborhoods in conditional density estimation

We define the weak and \(\nu\)-integrated \(L_1\) neighborhoods of the collection of conditional densities \(\{f_0(\cdot | x), x \in \mathcal{X}\}\) in the following. A sub-base of a weak neighborhood is defined as

\[
W_{\epsilon,g}(f_0) = \left\{ f : f \in \mathcal{F}_d, \left| \int_{\mathcal{X} \times \mathcal{Y}} gh - \int_{\mathcal{X} \times \mathcal{Y}} gh_0 \right| < \epsilon \right\},
\]

for a bounded continuous function \(g : \mathcal{Y} \times \mathcal{X} \to \mathbb{R}\). A weak neighborhood base is formed by finite intersections of neighborhoods of the type (5.1).

Define a \(\nu\)-integrated \(L_1\) neighborhood

\[
S_{\epsilon}(f_0; \nu) = \left\{ f : f \in \mathcal{F}_d, \int \|f(\cdot | x) - f_0(\cdot | x)\|_1 \nu(x) dx < \epsilon \right\}
\]

for any measure \(\nu\) with \(\text{supp}(\nu) \subset \mathcal{X}\). Observe that under the topology in (5.2), \(\mathcal{F}_d\) can be identified to a closed subset of \(L_1(\lambda \times \nu, \mathcal{Y} \times \text{supp}(\nu))\) making it a complete separable metric space. Thus measurability issues won’t arise with these topologies. Although the choice of \(\nu\)-integrated \(L_1\) topology might not seem to be a good choice of metric for the conditional densities in the onset, we refer the reader to two observations mentioned in Section 4 in [36] to point out why this is not a terrible thing to do.

In the following, we define the Kullback-Leibler (KL) property of \(\Pi_{\mathcal{X}}\) at a given \(f_0 \in \mathcal{F}_d\). Note that we define a KL-type neighborhood around the collection of conditional densities \(f_0\) through defining a KL neighborhood around the joint density \(h_0\), while keeping \(Q\) fixed at its true unknown value.

Definition 5.1. For any \(f_0 \in \mathcal{F}_d\), such that \(h_0(x, y) = q(x)f_0(y | x)\) is the true joint data-generating density, we define an \(\epsilon\)-sized KL neighborhood around \(f_0\) as

\[
K_\epsilon(f_0) = \left\{ f : f \in \mathcal{F}_d, KL(h_0, h) < \epsilon, h(x, y) = q(x)f(y | x) \forall y \in \mathcal{Y}, x \in \mathcal{X} \right\},
\]

where \(KL(h_0, h) = \int h_0 \log(h_0/h)\). Then, \(\Pi_{\mathcal{X}}\) is said to have KL property at \(f_0 \in \mathcal{F}_d\), denoted \(f_0 \in KL(\Pi_{\mathcal{X}})\), if \(\Pi_{\mathcal{X}}\{K_\epsilon(f_0)\} > 0\) for any \(\epsilon > 0\).
We recall the definitions of various modes of posterior consistency through \(y^n = (y_1, \ldots, y_n)\) and \(x^n = (x_1, \ldots, x_n)\).

Definition 5.2. The posterior \(\Pi_X(\cdot \mid y^n, x^n)\) is consistent weakly or strongly in the \(\nu\)-integrated \(L_1\) topology at \(\{f_0(\cdot \mid x), x \in X\}\) if \(\Pi_X(U^c \mid y^n, x^n) \to 0\) a.s. for any \(\epsilon > 0\) with \(U = W_\epsilon(f_0)\) and \(S_\epsilon(f_0; \nu)\) respectively.

Here a.s. consistency at \(\{f_0(\cdot \mid x), x \in X\}\) means that the posterior distribution concentrates around a neighborhood of \(\{f_0(\cdot \mid x), x \in X\}\) for almost every sequence \(\{y_i, x_i\}_{i=1}^\infty\) generated by i.i.d. sampling from the joint density \(q(x)f_0(y \mid x)\).

Another definition we would require for showing the KL support is the notion of weak neighborhood of a collection of mixing measures \(G_X = \{G_x, x \in X\}\) where \(G_x\) is a probability measure on \(S \times \mathbb{R}^+\) for each \(x \in X\). Here \(S = \mathbb{R}^p\) or \(\mathbb{R}\) depending on the cases considered above. We formulate the notion of a sub-base of the weak neighborhood of \(G_X = \{G_x, x \in X\}\) below.

Definition 5.3. For a bounded continuous function \(g : S \times \mathbb{R}^+ \times X \to \mathbb{R}\) and \(\epsilon > 0\), a sub-base of the weak neighborhood of a conditional probability measure \(F_x, x \in X\) is defined as

\[
\left\{ \{G_x, x \in X\} : \left| \int_{S \times \mathbb{R}^+ \times X} g(s, \sigma, x) dG_x(s, \sigma)q(x)dx - \right.\right.
\]
\[
\left. g(s, \sigma, x) dF_x(s, \sigma)q(x)dx \right| < \epsilon \right\}.
\]

(5.3)

A conditional probability measure \(\{G_x, x \in X\}\) lies in the weak support of \(P_X\) if \(P_X\) assigns positive probability to every basic neighborhood generated by the sub-base of the type (5.3). In the sequel, we will also consider a neighborhood of the form

\[
\left\{ \{G_x, x \in X\} : \sup_{x \in X} \left| \int_{S \times \mathbb{R}^+} \{g(s, \sigma) dG_x(s, \sigma) - g(s, \sigma) dF_x(s, \sigma)\} \right| \right.
\]
\[
\left. < \epsilon \right\}.
\]

(5.4)

for a bounded continuous function \(g : S \times \mathbb{R}^+ \to \mathbb{R}\).

6. Posterior consistency in MGLR mixture of Gaussians

6.1. Kullback-Leibler property

We will work with a specific choice of \(P_X\) motivated by the probit stick breaking process construction in [14] but using Gaussian process transforms...
instead of Gaussian transforms. Let
\[\pi_h(x) = \Phi\{\alpha_h(x)\} \prod_{l<h} [1 - \Phi\{\alpha_l(x)\}], \]
where \(\alpha_h \sim \text{GP}(0, c_h) \), for \(h = 1, 2, \ldots, \infty \). Assume the following holds.

S1. \(c_h \) is chosen so that \(\alpha_h \sim \text{GP}(0, c_h) \) has continuous path realizations and

S2. for any continuous function \(g: \mathcal{X} \mapsto \mathbb{R} \),
\[P_{\mathcal{X}}\left\{ \sup_{x \in \mathcal{X}} |\alpha_h(x) - g(x)| < \epsilon \right\} > 0 \]
for \(h = 1, \ldots, \infty \) and for any \(\epsilon > 0 \).

S3. \(G_0 \) is absolutely continuous with respect to \(\lambda(\mathbb{R}^p \times \mathbb{R}^+) \).

Consider the subset \(\mathcal{F}_d^* \subset \mathcal{F}_d \) satisfying the following conditions.

A1. \(f \) is nowhere zero and bounded by \(M < \infty \).

A2. \[\int_{\mathcal{X}} \int_{\mathcal{Y}} f(y \mid x) \log f(y \mid x) dy q(x) d x < \infty. \]

A3. \[\int_{\mathcal{X}} \int_{\mathcal{Y}} f(y \mid x) \log \left(\frac{f(y \mid x)}{\psi_x(y)} \right) dy q(x) d x < \infty, \]
where \(\psi_x(y) = \inf_{t \in [y-1, y+1]} f(t \mid x) \).

A4. \(\exists \eta > 0 \) such that \[\int_{\mathcal{X}} \int_{\mathcal{Y}} |y|^{2(1+\eta)} f(y \mid x) dy q(x) d x < \infty. \]

A5. \((x, y) \mapsto f(y \mid x) \) is jointly continuous.

Remark 6.1. A1 is usually satisfied by common densities arising in practice. A4 imposes a minor tail restriction; e.g., a mean regression model with continuous mean function and a heavy-tailed \(t \) residual density with 4 degrees of freedom satisfies A4. Conditions A2 and A3 are more subtle, but are also mild. A flexible class of models which satisfies A1-A5 is as follows. Let \(y_i = \mu(x_i) + \epsilon_i \), with \(\mu: \mathcal{X} \rightarrow \mathbb{R} \) continuous and \(\epsilon_i \sim f_{x_i} \), where \(f_{x_i}(\epsilon) = \sum_{h=1}^{H} \pi_h(x) \psi(\epsilon; \mu_h, \sigma_h^2) \) for some \(H \geq 1 \), \(\sum_{h=1}^{H} \pi_h(x) = 1 \), \(\pi_h: \mathcal{X} \rightarrow [0, 1] \) continuous and \(\psi \) is Gaussian or \(t \) with greater than 2 degrees of freedom.

The following theorem characterizes the subset of \(\mathcal{F}_d \) for which \(\Pi_{\mathcal{X}} \) has the KL property. The proof of Theorem 6.2 is provided in Appendix D.

Theorem 6.2. \(f_0 \in KL(\Pi_{\mathcal{X}}) \) for each \(f_0 \) in \(\mathcal{F}_d^* \) if \(P_{\mathcal{X}} \) satisfies S1-S3.

Remark 6.3. The conditions are satisfied for a class of generalized stick-breaking process mixtures in which the stick-breaking lengths are constructed through mapping continuous stochastic processes to the unit interval using a monotone differentiable link function.
To prove Theorem 6.2, we need several auxiliary results related to the support of the prior \mathcal{P}_X which might be of independent interest. The key idea for showing that the true f_0 satisfies $\Pi_X\{K_\epsilon(f_0)\} > 0$ for any $\epsilon > 0$ is to impose certain tail conditions on $f_0(y \mid x)$ and approximate it by $\tilde{f}(y \mid x) = \int \frac{1}{\sigma} \phi\left(\frac{y-x\beta}{\sigma}\right) d\tilde{G}_x(\beta, \sigma)$, where $\{\tilde{G}_x, x \in X\}$ is compactly supported. Observe that,

$$KL(h_0, h) = \int_X \int_Y f_0(y \mid x) \log \frac{f_0(y \mid x)}{f(y \mid x)} dy q(x) dx + \int_X \int_Y f_0(y \mid x) \log \frac{\tilde{f}(y \mid x)}{f(y \mid x)} dy q(x) dx.$$ \hfill (6.2)

We construct such an \tilde{f} in Theorem 6.2 which makes the first term in the right hand side of (6.2) sufficiently small. The following lemma (which is similar to Lemma 3.1 in [5] and Theorem 3 in [4]) guarantees that the second term in the right hand side of (6.2) is also sufficiently small if $\{G_x, x \in X\}$ lies inside a finite intersection of neighborhoods of $\{\tilde{G}_x, x \in X\}$ of the type (5.4).

Lemma 6.4. Assume that $f_0 \in \mathcal{F}_d$ satisfies $\int_X \int_Y y^2 f_0(y \mid x) dy q(x) dx < \infty$. Suppose $\tilde{f}(y \mid x) = \int \frac{1}{\sigma} \phi\left(\frac{y-x\beta}{\sigma}\right) d\tilde{G}_x(\beta, \sigma)$, where $\exists a > 0$ and $0 < \sigma < \overline{\sigma}$ such that

$$\tilde{G}_x([a, a] \times (\sigma, \overline{\sigma}) = 1 \forall x \in X,$$ \hfill (6.3)

so that \tilde{G}_x has compact support for each $x \in X$. Then given any $\epsilon > 0$, \exists a finite intersection W of neighborhoods of $\{\tilde{G}_x, x \in X\}$ of the type (5.4) such that for any conditional density $\tilde{f}(y \mid x) = \int \frac{1}{\sigma} \phi\left(\frac{y-x\beta}{\sigma}\right) d\tilde{G}_x(\beta, \sigma)$, $x \in X$, with $\{G_x, x \in X\} \in W$,

$$\int_X \int_Y f_0(y \mid x) \log \frac{\tilde{f}(y \mid x)}{f(y \mid x)} dy q(x) dx < \epsilon.$$ \hfill (6.4)

The proof of Lemma 6.4 is provided in Appendix A. In order to ensure that the weak support of Π_X is sufficiently large to contain all densities \tilde{f} satisfying the assumptions of Lemma 6.4, we define a collection of fixed conditional probability measures on $(\mathbb{R}^p \times \mathbb{R}^+, \mathcal{B}(\mathbb{R}^p \times \mathbb{R}^+))$ denoted by G^*_X satisfying

1. $x \mapsto F_x(B)$ is a continuous function of $x \in X \forall B \in \mathcal{B}(\mathbb{R}^p \times \mathbb{R}^+)$.
2. For any sequence of sets $A_n \subset \mathbb{R}^p \times \mathbb{R}^+ \downarrow \emptyset$, $\sup_{x \in X} F_x(A_n) \downarrow 0$.

10
Next we state the theorem characterizing the weak support of \mathcal{P}_X which will be proved in Appendix C.

Theorem 6.5. If \mathcal{P}_X satisfies S1-S3, then any $\{F_x, x \in X\} \in \mathcal{G}_X^*$ lies in the weak support of \mathcal{P}_X.

Corollary 6.6. Assume S1-S3 hold and assume $F_x \in \mathcal{G}_X^*$ is compactly supported, i.e., there exists $a, \sigma, \sigma > 0$ such that $F_x([-a, a]^p \times [\sigma, \sigma]) = 1$. Then for a bounded uniformly continuous function $g : \mathbb{R}^p \times \mathbb{R}^+ \to [0, 1]$ satisfying $g(\beta, \sigma) \to 0$ as $\|\beta\| \to \infty, \sigma \to \infty$,

$$\mathcal{P}_X \left\{ \{G_x, x \in X\} : \sup_{x \in X} \left| \int_{\mathbb{R}^p \times \mathbb{R}^+} \{g(\beta, \sigma)dF_x(\beta, \sigma) - g(\beta, \sigma)dG_x(\beta, \sigma)\} \right| < \epsilon \right\} > 0 \text{ (6.5)}$$

Proof. The proof is similar to Theorem 6.5 with the L_1 convergence in (C.1) replaced by convergence uniformly in x. This is because under the assumptions of Corollary 6.6, the uniformly continuous sequence of functions $\sum_{k=1}^n g(\bar{\beta}_{k,n}, \bar{\sigma}_{k,n})F_x(A_{k,n})$ on X monotonically decreases to $\int_C g(\beta, \sigma)dF_x(\beta, \sigma)$ as $n \to \infty$ where C is given by $[-a, a]^p \times [\sigma, \sigma]$.

The proof of the following corollary is along the lines of the proof of Theorem 6.5 and is omitted here.

Corollary 6.7. Under the assumptions of Corollary 6.6 for any $k_0 \geq 1$,

$$\mathcal{P}_X \left\{ \bigcap_{j=1}^{k_0} U_j \right\} > 0 \text{ (6.6)}$$

where U_j’s are neighborhoods of the type (6.5).

6.2. Strong Consistency with the q-integrated L_1 neighborhood

To obtain strong consistency in the q-integrated L_1 topology, we need a very straightforward extension of Theorem 2 of [4] below.

Theorem 6.8. Suppose $f_0 \in KL(\Pi_\mathcal{X})$ and there exists subsets $\mathcal{F}_n \subset \mathcal{F}_d$ with

1. $\log N(\epsilon, \mathcal{F}_n, \|\cdot\|_1) = o(n)$,
2. $\Pi_\mathcal{X}(\mathcal{F}_n^c) \leq c_2 e^{-n\beta_2}$ for some $c_2, \beta_2 > 0$,

then the posterior is strongly consistent with respect to the q-integrated L_1 neighborhood.
Before stating the main theorem on strong consistency, we consider a hierarchical extension of MGLR\(_\mathbf{x}\) where the bandwidths are taken to be random. We define a sequence of random inverse-bandwidths \(A_h\) of the Gaussian process \(\alpha_h\), \(h \geq 1\) each having \(\mathbb{R}^+\) as its support. Since the first few atoms suffice to explain most of the dependence of \(y\) on \(x\), we expect that the variability due to the covariate in the stochastic process \(\Phi\) decreases as \(h\) increases. This is achieved through a carefully chosen prior for the covariance kernel \(c_h\) of the Gaussian process \(\alpha_h\).

Let \(\alpha_0\) denote the base Gaussian process on \([0, 1]^p\) with covariance kernel \(c_0(x, x') = \tau^2 e^{-\|x-x\|^2}\). Then \(\alpha_h(x) = \alpha_0(A_h^{1/2}x)\) for each \(x \in \mathcal{X}\). The variability of \(\alpha_h\) with respect to the covariate is shrunk or stretched to the rectangle \([0, A_h^{1/2}]^p\) as \(A_h\) decreases or increases. \(A_h\)'s are constructed to be stochastically decreasing to \(\delta_0\) in the following manner. We assume that there exist \(n, n_0 > 0\) and a sequence \(\delta_n = O((\log n)^2/n^{5/2})\) such that \(P(A_h > \delta_n) \leq \exp\{-n^{-\eta_0}h^{-n+2}\eta \log h\}\) for each \(h \geq 1\). Also assume that there exists a sequence \(r_n \uparrow \infty\) such that \(r_n n^n(\log n)^{p+1} = o(n)\) and \(P(A_h > r_n) \leq e^{-n}\). We will discuss how to construct such a sequence of random variables in the Remark 6.11 following Theorem 6.9.

The following theorem provides sufficient conditions for strong posterior consistency in the \(q\)-integrated \(L_1\) topology. The proof is provided in Appendix E.

Theorem 6.9. Let \(\pi_h\)'s satisfy (6.1) with \(\alpha_h \sim GP(0, c_h)\) where \(c_h(x, x') = \tau^2 e^{-A_h\|x-x\|^2}\), \(h \geq 1\), \(\tau^2 > 0\) fixed.

1. There exists sequences \(a_n, h_n \uparrow \infty, l_n \downarrow 0\) with \(\frac{a_n}{n} = O(n), \frac{h_n}{n} = O(e^n)\), and constants \(d_1, d_2 > 0\) such that \(G_0\{B(0; a_n) \times [l_n, h_n]\} < d_1 e^{-d_2 n}\) for some \(d_1, d_2 > 0\).

2. \(A_h\)'s are constructed as in the last paragraph before Lemma 6.14.

then \(f_0 \in KL(\Pi_{\mathcal{X}})\) implies that \(\Pi_{\mathcal{X}}\) achieves strong posterior consistency in \(q\)-integrated \(L_1\) topology at \(f_0\).

Remark 6.10. Verification of condition C1 of Theorem 6.9 is particularly simple. For example, if \(G_0\) is a product of multivariate normals on \(\beta\) and an inverse Gamma prior on \(\sigma^2\), the condition C1 is satisfied with \(a_n = O(\sqrt{n}), h_n = e^n, l_n = O(\frac{1}{\sqrt{n}})\). It follows from [37] that \(f_0 \in KL(\Pi_{\mathcal{X}})\) is still satisfied when we have the additional assumptions C1-C2 together with S1-S3 on the prior \(\Pi_{\mathcal{X}}\).

Remark 6.11. Since we need \(r_n^p n^n(\log n)^{p+1} = o(n)\), \(r_n^p\) can be chosen to be \(O(n^{\eta_1})\) for some \(0 < \eta_1 < 1\). Let \(d\) be such that \(d\eta_1/p \geq 1\) and set \(\eta_0 = 3d\).
Let $A_h = c_h B_h$, where $B_h^d \sim \text{Exp}(\lambda)$ and $c_h = (h^{(3d+2)/\eta} \log h)^{-1/d}$ for any $0 < \eta < 1$. Then $P(A_h > n^{n/p}) \leq P(B_h > n^{n/p}) \leq e^{-n^{\sigma_1/p}} \leq e^{-n}$ and $P(A_h > (\log n)^2 n^{-5/2}) \leq \exp\{-n^{-3d/\eta(3d+2)/\eta} \log h\}$.

Remark 6.12. The theory of strong posterior consistency can be generalized to an arbitrary monotone differentiable link function $L: \mathbb{R} \rightarrow [0, 1]$ which is Lipschitz, i.e., there exists a constant $K > 0$ such that $|L(x) - L(x')| \leq K |x - x'|$ for all $x, x' \in \mathcal{X}$.

Below we will develop several auxiliary results required to prove Theorem 6.9. They are stated below as some of them might be of independent interest. Let $\phi_{\beta, \sigma}(x, y) := \frac{1}{\sigma} \phi\left(\frac{y - x}{\sigma}\right)$ for $y \in Y$ and $x \in \mathcal{X}$. From [5], we obtain for $\sigma_2 > \sigma_1 > \frac{2}{ \sqrt{3}}$ and for each $x \in \mathcal{X}$,

$$\int_{\mathcal{Y}} \left| \phi_{\beta_1, \sigma_1}(x, y) - \phi_{\beta_2, \sigma_2}(x, y) \right| dy \leq \left(\frac{2}{\pi} \right)^{1/2} \frac{\|\beta_2 - \beta_1\| \sqrt{\sigma}}{\sigma_2} + 3(\sigma_2 - \sigma_1)$$

Construct a sieve for (β, σ) as

$$\Theta_{a, h, l} = \{ \phi_{\beta, \sigma} : \|\beta\| \leq a, l \leq \sigma \leq h \}.$$

(6.7)

In the following Lemma, we provide an upper bound to $N(\Theta_{a, h, l}, \epsilon, d_{SS})$. The proof is omitted as it follows trivially from Lemma 4.1 in [5].

Lemma 6.13. There exists constants $d_1, d_2 > 0$ such that $N(\Theta_{a, h, l}, \epsilon, d_{SS}) \leq d_1 \left(\frac{e}{\epsilon}\right)^p + d_2 \log \frac{h}{\epsilon} + 1$.

In the proof of Theorem 6.9, we will verify the sufficient conditions of Theorem 6.8. We calibrate \mathcal{F}_d by a carefully chosen sequence of subsets $\mathcal{F}_n \subset \mathcal{F}_d$. The fundamental problem with mixture models $\int N(y; \mu, \sigma^2 I_p) dP(\mu)$ in estimating a multivariate density lies in attempting to compactify the model space by $\{ \int N(y; \mu, \sigma^2 I_p) dP(\mu) : P((-a_n, a_n]^p) > 1 - \delta \}$ for each σ leading to an entropy d_n^h growing exponentially with the dimension p. Here we marginalize P in $\int N(y; \mu, \sigma^2 I_p) dP(\mu)$ to yield the following construction $\{ \sum_{h=1}^{m_n} \pi_h N(y; \mu_h, \sigma^2 I_p) : \|\mu_h\| \leq a_n, h = 1, \ldots, m_n, \sum_{h=m_{n+1}+1}^{\infty} \pi_h < \epsilon \}$ leading to an entropy $m_n \log a_n$ where m_n is related to the tail-decay of $P(\sum_{h=m_{n+1}+1}^{\infty} \pi_h > \epsilon)$. With this idea in place, we extend the construction of \mathcal{F}_n for conditional densities below.

Assume $\epsilon > 0$ is given. Let \mathbb{B}_1 denote a unit ball in the RKHS of the covariance kernel $\tau^2 e^{-\alpha \|x - x\|^2}$ and \mathbb{B}_1 is a unit ball in $\mathbb{C}[0, 1]^p$. For numbers
M, m, r, δ, construct a sequence of subsets $\{B_h, h = 1, \ldots, m\}$ of $\mathbb{C}[0, 1]^p$ as follows.

$$B_h = \begin{cases} (M \sqrt{r/\delta} \mathbb{H}_1^q + \frac{4}{m^2} \mathbb{B}_1) \cup (\bigcup_{a<\delta} M \mathbb{H}_1^q + \frac{4}{m^2} \mathbb{B}_1), & \text{if } h = 1, \ldots, m^n \\ \bigcup_{a<\delta} M \mathbb{H}_1^q + \frac{4}{m^2} \mathbb{B}_1, & \text{if } h = m^n + 1, \ldots, m. \end{cases}$$

The idea is to construct

$$\mathcal{F}_n = \left\{ f : f(y \mid x) = \sum_{h=1}^\infty \pi_h(x) \frac{1}{\sigma_h} \phi \left(\frac{y - x' \beta_h}{\sigma_h} \right), \{\beta_{h,i}\}_{i=1}^{m_n} \right\} \in \Theta_{a_m, h, l_n, \alpha_h} \subseteq B_{h,n}, h = 1, \ldots, m_n, \sup_{x \in X} \sum_{h \geq m_n+1} \pi_h(x) \leq \epsilon \right\}. \tag{6.8}$$

for appropriate sequences $a_m, l_n, h_n, M_n, m_n, r_n, \delta_n$ to be chosen in the proof of Theorem 6.9.

The following lemma is also crucial to the proof of Theorem 6.9 which allows us to calculate the rate of decay of $P(\sup_{x \in X} \pi_h(x) > \epsilon)$ with m_n.

Lemma 6.14. Let π_h‘s satisfy (6.1) with $\alpha_h \sim GP(0, c_h)$ where $c_h(x, x') = \tau^2 e^{-\lambda_h \|x - x'\|^2}, h \geq 1, \tau^2 > 0$ fixed. Then for some constant $C_7 > 0$,

$$\Pi_X \left(\left\| \sum_{h=m_n+1}^{\infty} \pi_h \right\| > \epsilon \right) \leq e^{-C_7 m_n \log m_n} + \sum_{h=m_n+1}^{m_n} P(A_h > \delta_n). \tag{6.9}$$

Proof. Let $W_h = -\log[1 - \Phi(\alpha_h')]$ where $\alpha_h' = \inf_{x \in X} \alpha_h(x)$, $Z_h \sim \text{Ga}(1, \gamma_0)$. We will choose an appropriate value for γ_0 in the sequel. Let $t_0 = -\log \epsilon > 0$.

Observe that

$$\Pi_X \left(\left\| \sum_{h=m_n+1}^{\infty} \pi_h \right\| > \epsilon \right) = \Pi_X \left(\sup_{x \in X} \prod_{h=1}^{m_n} [1 - \Phi(\alpha_h(x))] > \epsilon \right) \leq \Pi_X \left(\prod_{h=m_n+1}^{m_n} [1 - \Phi(\alpha_h')] > \epsilon \right) = \Pi_X \left(-\sum_{h=m_n+1}^{m_n} \log \{1 - \Phi(\alpha_h')\} < t_0 \right).$$

Note that if we had $\alpha_h(x) \equiv \alpha_h \sim N(0, 1)$, then the right hand side above equals

$$\Pi_X \left(\sum_{h=1}^{m_n} \log \{1 - \Phi(\alpha_h)\} < t_0 \right) = \Pi_X (\Lambda_h < t_0)$$

where $\Lambda_h \sim \text{Ga}(m_n, 1)$. Then it’s easy to show that $\Pi_X (\Lambda_h < t_0) \leq e^{-m_n \log m_n}$. However, the calculation gets complicated when α_h‘s are i.i.d.
realizations of a zero mean Gaussian process. The proof relies on the fact that the supremum of Gaussian processes has sub-Gaussian tails.

Below we calculate the rate of decay of \(\Pi_X \left(\| \sum_{h=n+1}^\infty \pi_h \|_\infty > \epsilon \right) \) with \(m_n \). We will show that there exists \(\gamma_0 \), depending on \(\epsilon \) and \(\tau \) but not depending on \(n \), such that

\[
\Pi_X \left(\sum_{h=m_n+1}^{m_n} W_h < t_0 \right) \leq \xi (\delta_n)^{m_n-m_n^0} \Pi_X \left(\sum_{h=m_n^0+1}^{m_n} Z_h < t_0 \right) + \sum_{h=m_n^0+1}^{m_n} P(A_h > \delta_n).
\]

(6.10)

where there exists a constant \(C_5 > 0 \) such that \(\xi(x) = C_5 x^{p/2} \) for \(x > 0 \). Observe that \(\Pi_X \left(\sum_{h=m_n^0+1}^{m_n} W_h < t_0 \right) \leq \Pi_X \left(\sum_{h=m_n^0+1}^{m_n} W_h < t_0, A_h \leq \delta_n, h = m_n^0 + 1, \ldots, m_n \right) + \sum_{h=m_n^0+1}^{m_n} P(A_h > \delta_n) \).

Since \(\Pi_X \left(\sum_{h=m_n^0+1}^{m_n} W_h < t_0 \right) = \Pi_X \left(\sum_{h=m_n^0+1}^{m_n} (\tau'/\tau) W_h < \tau' t_0 / \tau \right) \) for some \(\tau' < 1 \), we can re-parameterize \(t_0 \) as \(\tau' t_0 / \tau \) and \(\tau \) as \(\tau' \). Hence without loss of generality we assume \(\tau < 1 \).

Define \(g : [0, t_0] \to \mathbb{R}, t \mapsto -\Phi^{-1}(1-e^{-t}) \). It holds that \(g \) is a continuous function on \((0, t_0) \). Assume \(\alpha_0 \sim \text{GP}(0, c_0) \) where \(c_0(x, x') = \tau^2 e^{-\|x-x'\|^2} \).

For \(h = m_n^0 + 1, \ldots, m_n \),

\[
P(\sup_{x \in \mathcal{X}} \alpha_h(x) \geq \lambda, A_h \leq \delta_n) \leq P(\sup_{x \in \sqrt{\delta_n} \mathcal{X}} \alpha_0(x) \geq \lambda).
\]

Below we estimate \(P(\sup_{x \in \sqrt{\delta_n} \mathcal{X}} \alpha_0(x) \geq \lambda) \) for large enough \(\lambda \) following Theorem 5.2 of [38]. However extra care is required to identify the role of \(\delta_n \). Since \(N(\epsilon, \sqrt{\delta_n} \mathcal{X}, \|\cdot\|) \leq C_1(\sqrt{\delta_n}/\epsilon)^p, \)

\[
\int_0^\epsilon \{ \log N(\epsilon, \sqrt{\delta_n} \mathcal{X}, \|\cdot\|) \}^{1/2} d\epsilon \leq C_2 \epsilon \{ 1 + \sqrt{\log(1/\epsilon)} \}.
\]

for some constant \(C_2 > 0 \). Hence

\[
P(\sup_{x \in \sqrt{\delta_n} \mathcal{X}} \alpha_0(x) \geq \lambda) \leq C_3(\sqrt{\delta_n}/\epsilon)^p \exp[-1/2(\lambda - C_2/\lambda(1 + \sqrt{\log \lambda})^2/\tau^2)] \leq C_3 \delta_n^{p/2} \lambda^{p+2} \{ 1 - \Phi(\lambda/\tau^2) \} \leq C_4 \delta_n^{p/2} \{ 1 - \Phi(\lambda) \}.
\]
for constants $C_3, C_4 > 0$. The last inequality holds for all large λ because $\tau < 1$. Hence there exists $t_1 \in (0, t_0)$ sufficiently small and independent of n such that for all $t \in (0, t_1)$, $\Pi_X\{\sup_{x \in \sqrt{n}X} \alpha_0(x) \geq g(t)\} \leq C_4 \delta_n^{p/2} \Phi\{-g(t)\}$.

Observe that $\Pi_X\{\sup_{x \in \sqrt{n}X} \alpha_0(x) \geq g(t)\} \leq C_4 \delta_n^{p/2} \Phi\{-g(t)\} = C_4 \delta_n^{p/2}(1 - e^{-t}) < C_5 \delta_n^{p/2}(1 - e^{-\gamma_0 t})$, for any $\gamma_0 > 1$. Further choose γ_0 large enough such that $2(1 - e^{-\gamma_0 t}) > 1 \forall t \in [t_1, t_0]$. Hence $P(W_h \leq t, A_h \leq \delta_n) \leq \xi(\delta_n)P(Z_h < t) \forall t \in (0, t_0]$ where $\xi(\delta_n) = C_5 \delta_n^{p/2}$, with $C_5 = \max\{2, C_4\}$. Applying Lemma Appendix F.1, we conclude (6.10) by induction. Lemma Appendix F.1 is proved in Appendix F. As $\sum_{h=1}^{m_n} Z_h \sim \text{Ga}(m_n, \gamma_0)$, $\Pi_X\left(\sum_{h=1}^{m_n} Z_h < t_0\right) \leq e^{-C_6 m_n \log m_n}$ for some constant $C_6 > 0$. Since $\xi(\delta_n)^{m_n-m_n^2} \Pi_X\left(\sum_{h=1}^{m_n} Z_h < t_0\right) \leq (e^{-C_7 m_n \log m_n})$ for some constant $C_7 > 0$, the result follows immediately.

7. Posterior consistency in Gaussian mixture of fixed-π dependent processes

7.1. Kullback-Leibler property

The following theorem verifies that Π_X has KL property at $f_0 \in \mathcal{F}_d^s$. The proof of Theorem 7.1 is somewhat similar to that of Theorem 6.2 and can be found in Appendix G.

Theorem 7.1. $f_0 \in KL(\Pi_X)$ for each f_0 in \mathcal{F}_d^s if \mathcal{P}_X satisfies

T1. G_0 is specified by $\mu_h \sim GP(\mu, c), \sigma_h \sim G_{0, \sigma}$ where c is chosen so that $GP(0, c)$ has continuous path realizations and Π_σ is absolutely continuous w.r.t. Lebesgue measure on \mathbb{R}^+.

T2. For every $k \geq 2$, (π_1, \ldots, π_k) is absolutely continuous w.r.t. to the Lebesgue measure on S_{k-1}.

T3. For any continuous function $g : \mathcal{X} \mapsto \mathbb{R}$,

$$\mathcal{P}_X\left\{\sup_{x \in \mathcal{X}} |\mu_h(x) - g(x)| < \epsilon\right\} > 0$$

$h = 1, \ldots, \infty$ and for any $\epsilon > 0$.

16
7.2. Strong consistency with the q-integrated L_1 neighborhood

Next we summarize the consistency theorem with respect to the q-integrated L_1 topology. The proof of Theorem 7.2 is also similar to that of Theorem 6.9 and is provided in Appendix H.

Theorem 7.2. Let $\mu_h(x) = x'\beta_h + \eta_h(x)$, $\beta_h \sim G_\beta$ and $\eta_h \sim GP(0, c)$, $h = 1, \ldots, \infty$ where $c(x, x') = \tau_2 e^{-A\|x-x'\|^2}$, $A \sim \text{Ga}(a, b)$ for some $\eta_2 > 0$.

$F1$. There exists sequences $a_n, h_n \uparrow \infty, l_n \downarrow 0$ with $\frac{a_n}{l_n} = O(n), \frac{h_n}{l_n} = O(e^n)$, and constants d_1, d_2, d_3 and $d_4 > 0$ such that $G_\beta\{B(0; a_n)\}^c < d_1 e^{-d_2 n}$ and $G_0, \sigma\{[l_n, h_n]\}^c \leq d_3 e^{-d_4 n}$.

$F2$. $P(\sum_{h=1}^{\infty} \pi_h > \epsilon) \lesssim O(e^{-n^{1+\eta_2}(\log n)^{(p+1)}})$.

then $f_0 \in KL(\Pi_X)$ implies that Π_X achieves strong posterior consistency at f_0 with respect to the q-integrated L_1 topology.

Remark 7.3. $F2$ is satisfied if π_h’s are made to decay more rapidly than the usual Beta$(1, \alpha)$ stick-breaking random variables, e.g., if $\pi_h = \nu_h \prod_{l<h} (1-\nu_h)$ and if $\nu_h \sim \text{Beta}(1, \alpha_h)$ where $\alpha_h = h^{1+\eta_2}(\log h)^{p+1} a_0$ for some $a_0 > 0$, then $F2$ is satisfied. Large value of α_h for the higher indexed weights favors smaller number of components.

8. Discussion

We have provided sufficient conditions to show posterior consistency in estimating the conditional density via predictor dependent mixtures of Gaussians which include probit stick-breaking mixtures of Gaussians and the fixed-π dependent processes as special cases. The problem is of interest, providing a more flexible and informative alternative to the usual mean regression. For both the models, we need the same set of tail conditions (mentioned in F^*_d) on f_0 for KL support. Although the first prior is flexible in the weights and the second one in the atoms through their corresponding GP terms, S1, S2, T1 and T3 show that verification of KL property only requires that both the GP terms have continuous path realizations and desired approximation property. Moreover, for the second prior, any set of weights summing to one a.s. (T2) suffices for showing KL property. Careful investigations of the prior for the GP kernel for the first model and the probability weights for the second one are required for strong consistency. For the first one we need the covariate dependence of the higher indexed GP terms in the weights to fade off. On the other hand, for the second model, the atoms can
be i.i.d. realizations of a GP with Gaussian covariance kernel with inverse-Gamma bandwidth while limiting the model complexity through a sequence of probability weights which are allowed to decay rapidly. This suggests that full flexibility in the weights should be down-weighted by an appropriately chosen prior while full flexibility in the atoms should be accompanied by a restriction imposing fewer number of components.

One alternative possibility is to specify a prior for the joint density $h(x, y) = q(x)f(y | x)$, to induce a prior on the conditional $f(y | x)$, where $q(x)$ denotes the joint density of the covariates. Using such an approach, which was originally proposed by [9] using Dirichlet process mixtures of multivariate Gaussians, one can potentially rely on the theory of large support and posterior consistency for i.i.d. realizations from a multivariate distribution; for example, refer to [26, 39]. Unfortunately, such an approach has clear disadvantages. When interest focuses on the conditional distribution of $f(y | x)$ it is very appealing to avoid needing to model the joint density of the predictors, $q(x)$, which will be multivariate in typical applications. In addition, standard models for the joint distribution relying on multivariate Dirichlet process mixtures (refer also to [40, 41]), can have relatively poor performance, because many mixture components may be introduced primarily to provide a good fit to the marginal $q(x)$, potentially leading to degradation of performance in estimating $f(y | x)$ for all $x \in \mathcal{X}$. The MGLR and the Gaussian mixture of fixed-π dependent processes are examples of priors directly on the conditional densities.

The q-integrated L_1 topology concerns average accuracy for prediction of future y values when the future x values are drawn from the same covariate distribution Q that generate the data x’s. It is preferable to use a topology that can lead to average accuracy guarantees when the future x’s are generated from any distribution ν whose support is a subset of the support of Q. To accomplish this, we propose to focus on a topology based on the supremum of L_1 neighborhoods of the true density in our future research.

Although, a more reasonable way of evaluating a Bayes procedure is to study the posterior convergence rates, deriving the rates of convergence in our case substantially complicates the analysis and is a topic of future research. Of course our sieve construction can be used to derive the rates, while being more careful in estimating the concentration of the prior around the true density, the rates of decay of the complement of the sieve and calculating the entropy.
9. Acknowledgements

This work was supported by Award Number R01ES017240 from the National Institute of Environmental Health Sciences. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institute of Environmental Health Sciences or the National Institutes of Health.

Appendix A. Proof of Lemma 6.1

The proof proceeds similarly to that for Theorem 3 in [4]. Note that \(\{ \tilde{G}_x, x \in \mathcal{X} \} \in G_{\mathcal{X}}^* \). Let \(B = ([-a, a]^p \times (\sigma, \tau)) \). Choose \(k > pa + \sigma \) such that

\[
\int \int_{|y| > k} f_0(y \mid x) \left\{ \frac{|y| + pa}{2\sigma^2} \right\}^2 dy q(x) dx < \frac{\epsilon}{2}.
\]

Take \(V = \{ \{ G_x \mid x \in \mathcal{X} \} : \inf_{x \in \mathcal{X}} G_x(B) = \frac{\sigma}{2} \} \). By approximating \(1_B \) by a bounded continuous function, we can show that \(V \) contains a neighborhood \(V' \) of \(\{ \tilde{G}_x \mid x \in \mathcal{X} \} \) of the type (6.5). For any density \(f \in \mathcal{F}_d, f(y \mid x) = \int \frac{1}{\sigma} \phi\left(\frac{y - x' \beta}{\sigma} \right) dG_x(\beta, \sigma), x \in \mathcal{X} \), with \(\{ G_x \mid x \in \mathcal{X} \} \in V' \),

\[
\int \int_{|y| > k} f_0(y \mid x) \log \left\{ \frac{f(y \mid x)}{\tilde{f}(y \mid x)} \right\} dy q(x) dx
\]

\[
\leq \int \int_{|y| > k} f_0(y \mid x) \log \frac{\int B \frac{1}{\sigma} \phi\left(\frac{y - x' \beta}{\sigma} \right) dG_x(\beta, \sigma)}{\int B \frac{1}{\sigma} \phi\left(\frac{y - x' \beta}{\sigma} \right) d\tilde{G}_x(\beta, \sigma)} dy q(x) dx
\]

\[
\leq \int \int_{|y| > k} f_0(y \mid x) \log \frac{1}{c} \frac{1}{\phi\left(\frac{|y| + pa}{\sigma} \right)} G_x(B) dy q(x) dx
\]

\[
\leq \int \int_{|y| > k} f_0(y \mid x) \left\{ \frac{|y| + pa}{2\sigma^2} \right\}^2 dy q(x) dx < \frac{\epsilon}{2}.
\]

Let \(\inf_{(y, x) \in \mathcal{X}} \inf_{(\beta, \sigma) \in B} \frac{1}{\sigma} \phi\left(\frac{y - x' \beta}{\sigma} \right) = c \). Consider the uniformly equi-
continuous family of functions

\[
\left\{ g_{y,x} : g_{y,x} : B \rightarrow \mathcal{R}, (\beta, \sigma) \mapsto \frac{1}{\sigma} \phi\left(\frac{y - x' \beta}{\sigma} \right), (y, x) \in [-k, k] \times \mathcal{X} \right\}.
\]

By the Arzela-Ascoli theorem, given \(\delta > 0 \), there exists finitely many points \(\{(y_i, x_i) \in [-k, k] \times \mathcal{X}, i = 1, \ldots, m\} \) such that for any \((y, x) \in [-k, k] \times \mathcal{X} \),
∃ i such that
\[\sup_{(\beta, \sigma) \in B} |g_{y, x}(\beta, \sigma) - g_{y, x}(\beta, \sigma)| < c\delta. \]

Let \(g_{y, x} \) such that
\[g_{y, x} = \int \int \phi \left(\frac{y - x'}{\sigma} \right) dG_x(\beta, \sigma). \]

\[E = \left\{ \{G_x \mid x \in \mathcal{X}\} : \sup_{x \in \mathcal{X}} |g_{y, x} \ast G_x - g_{y, x} \ast \tilde{G}_x| < c\delta, i = 1, 2, \ldots, m \right\}. \]

It holds that \(E \) is a neighborhood of \(\{\tilde{G}_x \mid x \in \mathcal{X}\} \) formed by finite intersections of sets of the type (6.5) and for \(\{G_x \mid x \in \mathcal{X}\} \in E \) and \((y, x) \in [-k, k] \times \mathcal{X}, \)

\[\left| \frac{1}{2} \phi \left(\frac{y - x'}{\sigma} \right) dG_x(\beta, \sigma) - 1 \right| < \frac{3\delta}{1 - 3\delta}. \]

for \(\delta < \frac{1}{3} \). Thus given any \(\epsilon > 0 \), there exists a neighborhood \(E \) of \(\{\tilde{G}_x \mid x \in \mathcal{X}\} \) such that for \(\{G_x \mid x \in \mathcal{X}\} \in E \) with \(f(y \mid x) = \int \frac{1}{2} \phi \left(\frac{y - x'}{\sigma} \right) dG_x(\beta, \sigma), \)

\[\int \mathcal{X} \int_{y : |y| \leq k} f_0(y \mid x) \log \left(\frac{\tilde{f}(y \mid x)}{f(y \mid x)} \right) dyq(x) dx < \frac{\epsilon}{2}. \] (A.1)

Taking \(W = V' \cap E \) and since \(W \) is a finite intersection of neighborhoods of \(\tilde{G}_x \) of the type (6.5), the result follows immediately. \(\square \)

Appendix B. A useful lemma

Lemma Appendix B.1. If \(\{\pi_h(x), h = 1, \ldots, \infty\} \) constructed as in (6.1) satisfies S1 and S2 then

\[\mathcal{P}_\mathcal{X} \left\{ \sup_{x \in \mathcal{X}} |\pi_1(x) - F_x(A_1)| < \epsilon_1, \ldots, \sup_{x \in \mathcal{X}} |\pi_k(x) - F_x(A_k)| < \epsilon_k \right\} > 0. \] (B.1)

for a measurable partition \(\{A_i, i = 1, \ldots, k\} \) of \(\mathbb{R}^p \times \mathbb{R}^+, \epsilon_i > 0 \) and a conditional cdf \(\{F_x, x \in \mathcal{X}\}. \)

Proof. Without loss of generality, let \(0 < F_x(A_i) < 1, i = 1, \ldots, k \forall x \in \mathcal{X}. \) We want to show that for any \(\epsilon_i > 0, i = 1, \ldots, k, \) (B.1) holds. Construct
continuous functions \(g_i : X \to \mathbb{R}, 0 < g_i(x) < 1 \forall x \in X, i = 1, \ldots, k-1 \) such that
\[
g_1(x) = F_X(A_1), \quad g_i(x) \prod_{l<i} \{1 - g_l(x)\} = F_X(A_i), \quad 2 \leq i \leq k-1, \quad g_k(x) = 1 \forall x.
\]
(B.2)

As \(0 < F_X(A_i) < 1, i = 1, \ldots, k \forall x \in X \), it is trivial to find \(g_i, i = 1, \ldots, k \) satisfying (B.2) since one can solve back for the \(g_i \)'s from (B.2).

\[
\sum_{i=1}^k F_X(A_i) = 1 \text{ enforces } g_k \equiv 1. \quad \text{Since } \Phi \text{ is a continuous function, for any } \epsilon_i > 0, i = 1, \ldots, k-1,
\]
\[
\mathcal{P}_X \left\{ \sup_{x \in X} |\Phi\{\alpha_i(x)\} - g_i(x)| < \epsilon_i \right\} > 0 \tag{B.3}
\]
and for \(i = k \),
\[
\mathcal{P}_X \left\{ \sup_{x \in X} |\Phi\{\alpha_k(x)\} - 1| < \epsilon_k \right\} = \mathcal{P}_X \left\{ \inf_{x \in X} \alpha_k(x) > \Phi^{-1}(1 - \epsilon_k) \right\}. \tag{B.4}
\]

Choose \(M > \Phi^{-1}(1 - \epsilon_k) + \epsilon_k \). We have \(0 < M < 1 \) and
\[
\left\{ \sup_{x \in X} |\alpha_k(x) - M| < \epsilon_k \right\} \subset \left\{ \inf_{x \in X} \alpha_k(x) > \Phi^{-1}(1 - \epsilon_k) \right\}.
\]

Hence by assumption, \(\mathcal{P}_X \left\{ \inf_{x \in X} \alpha_k(x) > \Phi^{-1}(1 - \epsilon_k) \right\} > 0. \) Let \(S_{k-1} \) denote the k-dimensional simplex. For notational simplicity let \(p_i(x) = \Phi\{\alpha_i(x)\}, g_i(x) = F_X(A_i), i = 1, \ldots, k-1 \) and \(g_k(x) = 1. \) Let \(z = (z_1, \ldots, z_p)', f_i : S_{k-1} \to \mathbb{R}, z \mapsto z_i \prod_{l<i} (1 - z_l), i = 2, \ldots, k \) and \(f_1(z) = z_1. \) Let \(p(x) = (p_1(x), \ldots, p_k(x)) \) and \(g(x) = (g_1(x), \ldots, g_k(x)). \) Then we need to show that
\[
\mathcal{P}_X \{\|f_1(p) - f_1(g)\|_\infty < \epsilon_1, \ldots, \|f_{k-1}(p) - f_{k-1}(g)\|_\infty < \epsilon_{k-1}, \|f_k(p) - 1\|_\infty < \epsilon_k\} > 0.
\]

Note that for \(2 \leq i \leq k, \)
\[
\|f_i(p) - f_i(g)\|_\infty = \left\| p_i \left\{1 - \sum_{l<i} f_l(p)\right\} - g_i \left\{1 - \sum_{l<i} f_l(g)\right\}\right\|_\infty
\]
\[
\leq (i - 1)\|p_i - g_i\|_\infty + \sum_{l<i} \|f_l(p) - f_l(g)\|_\infty.
\]

21
Thus one can get $\epsilon_i^* > 0, i = 1, \ldots, k$, such that
\[
\{\|p_i - g_i\|_\infty < \epsilon_i^*, i = 1, \ldots, k\} \subset \{\|f_1(p) - f_1(g)\|_\infty < \epsilon_1, \ldots, \|f_{k-1}(p) - f_{k-1}(g)\|_\infty < \epsilon_{k-1}, \|f_k(p) - 1\|_\infty < \epsilon_k\}.
\]
But since $P_X\{\|p_i - g_i\|_\infty < \epsilon_i^*, i = 1, \ldots, k\} = \prod_{i=1}^k P_X\{\|p_i - g_i\|_\infty < \epsilon_i^*\}$, the result follows immediately.

Appendix C. Proof of Theorem 6.2

Fix $\{F_x, x \in X\} \in \mathcal{G}_X^*$. Without loss of generality it is enough to show that for a uniformly continuous function $g : \mathbb{R}^p \times \mathbb{R}^+ \times X \to [0, 1]$ and $\epsilon > 0,$
\[
P_X\left\{G_x, x \in X : \int_{\mathbb{R}^p \times \mathbb{R}^+ \times X} \left\{g(\beta, \sigma, x) dG_x(\beta, \sigma) q(x) dx - g(\beta, \sigma, x) dF_x(\beta, \sigma) q(x) dx\right\} < \epsilon\right\} > 0.
\]
Furthermore, it suffices to assume $g(\beta, \sigma, x) \to 0$ uniformly in $x \in X$ as $\|\beta\| \to \infty, \sigma \to \infty.$

Fix $\epsilon > 0$, there exists $a, \sigma, \bar{\sigma} > 0$ not depending on x such that $F_x([a, \bar{a}] \times [\sigma, \bar{\sigma}]) > 1 - \epsilon$ for all $x \in X.$ Let $C = [-a, a] \times [\sigma, \bar{\sigma}].$
\[
\int_{\mathbb{R}^p \times \mathbb{R}^+ \times X} \left\{g(\beta, \sigma, x) dG_x(\beta, \sigma) - g(\beta, \sigma, x) dF_x(\beta, \sigma)\right\} q(x) dx \leq \int_X \left\{\sum_{h=1}^{\infty} \pi_h(x) g(\beta_h, \sigma_h, x) - \int_C g(\beta, \sigma, x) dF_x(\beta, \sigma)\right\} q(x) dx + \epsilon.
\]
where π_h’s are specified by 6.1 with c_h satisfying S1 and S2 and $(\beta_h, \sigma_h) \sim G_0.$ Now for each $x \in X,$ construct a Riemann sum approximation of
\[
\int_C g(\beta, \sigma, x) dF_x(\beta, \sigma).
\]
Let $\{A_k, n, k = 1, \ldots, n\}$ be sequence of partitions of C with increasing refinement as n increases. Assume $\max_{1 \leq k \leq n} \text{diam}(A_{k,n}) \to 0$ as $n \uparrow \infty.$ Fix $(\bar{\beta}_{k,n}, \bar{\sigma}_{k,n}) \in A_{k,n}, k = 1, \ldots, n.$ Then by DCT as $n \to \infty,$
\[
\int_X \left\{\sum_{k=1}^{n} g(\bar{\beta}_{k,n}, \bar{\sigma}_{k,n}, x) F_x(A_{k,n})\right\} q(x) dx \to \int_X \int_C g(\beta, \sigma, x) dF_x(\beta, \sigma) q(x) dx.
\]
Consider the set

Moreover, one can find a uniformity in subset \(\Omega \) and \(\Omega \) if \(X \) in \(\omega \). Since

\[
\int_{X} \left\{ \sum_{h=1}^{\infty} \pi_h(x)g(\beta_h, \sigma_h, x) - \sum_{k=1}^{n} g(\beta_{k,n}, \sigma_{k,n}, x)F_{\pi_h}(A_{k,n}) \right\} q(x)dx \leq 2\varepsilon.
\]

Consider the set

\[
\Omega_1 = \left\{ (\pi_h, h=1, \ldots, \infty) : \sup_{x \in X} |\pi_1(x) - F_{\pi_h}(A_{1,n})| < \frac{\varepsilon}{n_1}, \ldots, \sup_{x \in X} |\pi_{n_1}(x) - F_{\pi_h}(A_{n_1,n})| < \frac{\varepsilon}{n_1} \right\}.
\]

By Lemma Appendix B.1 which is proved in Appendix B, \(P_{X}(\Omega_1) > 0 \).

Since \(\sum_{h=1}^{\infty} \pi_h(x) = 1 \) a.s. there \(\exists \Omega \) with \(P_{X}(\Omega) = 1 \), such that for each \(\omega = (\pi_h, h=1, \ldots, \infty) \in \Omega \), \(g_n(x) = \sum_{h=1}^{n} \pi_h(x) \rightarrow 1 \) as \(n \rightarrow \infty \) for each \(x \) in \(X \). Note that this convergence is uniform since, \(g_n(\cdot) \), \(n \geq 1 \) are continuous functions defined on a compact set monotonically increasing to a continuous function identically equal to 1. Hence for each \(\omega = (\pi_h, h=1, \ldots, \infty) \in \Omega \), \(g_n(x) \rightarrow 1 \) uniformly in \(X \). By Egoroff’s theorem, there exists a measurable subset \(\Omega_2 \) of \(\Omega_1 \) with \(P_{X}(\Omega_2) > 0 \) such that within this subset \(g_n(x) \rightarrow 1 \) uniformly in \(x \) and uniformly in \(\omega \) in \(\Omega_2 \). Thus there exists a positive integer \(n_\varepsilon \geq n_1 \) not depending on \(x \) and \(\omega \), such that \(\sum_{h=n_\varepsilon+1}^{\infty} \pi_h(x) < \varepsilon \) on \(\Omega_2 \).

Moreover, one can find a \(K > 0 \) independent of \(x \) such that \(g(\beta, \sigma, x) < \varepsilon \) if \(||\beta|| > K \) and \(\sigma > K \).

Let

\[
\Omega_3 = \Omega_2 \cap \{(\beta_{n_1+1}, \sigma_{n_1+1}) \in A_1, \ldots, (\beta_{n_\varepsilon-1}, \sigma_{n_\varepsilon-1}) \in A_1\}.
\]

For \(\omega \in \Omega_3 \),

\[
\int_{\mathbb{R}^p \times \mathbb{R}^+ \times X} \left\{ g(\beta, \sigma, x)dG_{\pi_h}(\beta, \sigma) - g(\beta, \sigma, x)dF_{\pi_h}(\beta, \sigma) \right\} q(x)dx \leq \int_{X} \left\{ \sum_{k=1}^{n_1} \pi_k(x)g(\beta_k, \sigma_k, x) - g(\beta_{k,n}, \sigma_{k,n}, x)F_{\pi_h}(A_{k,n}) \right\} q(x)dx + 4\varepsilon
\]

and

\[
\int_{X} \left\{ \sum_{k=1}^{n_1} \pi_k(x)g(\beta_k, \sigma_k, x) - g(\beta_{k,n}, \sigma_{k,n}, x)F_{\pi_h}(A_{k,n}) \right\} q(x)dx \leq \sum_{k=1}^{n_1} \int_{X} \left\{ \pi_k(x)g(\beta_k, \sigma_k, x) - g(\beta_{k,n}, \sigma_{k,n}, x)F_{\pi_h}(A_{k,n}) \right\} q(x)dx + \varepsilon
\]

\[
\leq \sum_{k=1}^{n_1} \int_{X} \pi_k(x)g(\beta_k, \sigma_k, x) - g(\beta_{k,n}, \sigma_{k,n}, x)q(x)dx + \varepsilon.
\]
There exists sets $B_k, k = 1, \ldots, n_1$ depending on n_1 but independent of x such that if $(\beta_k, \sigma_k) \in B_k$, \(|g(\beta_k, \sigma_k, x) - g(\tilde{\beta}_{k,n_1}, \tilde{\sigma}_{k,n_1}, x)| < \epsilon \). So for \(\omega \in \Omega_4 = \Omega_3 \cap \{ (\beta_1, \sigma_1) \in B_1, \ldots, (\beta_{n_1}, \sigma_{n_1}) \in B_{n_1} \} \),

\[
\left| \int_{\mathbb{R}^p \times \mathbb{R}^d} \left\{ g(\beta, \sigma, x) dG_x(\beta, \sigma) - g(\beta, \sigma, x) dF_x(\beta, \sigma) \right\} q(x) dx \right| < 5\epsilon.
\]

Now since \(\mathcal{P}_X(\Omega_2) > 0 \) and the sets \(\{ (\beta_{n_1+1}, \sigma_{n_1+1}) \in A_1, \ldots, (\beta_{n_\epsilon-1}, \sigma_{n_\epsilon-1}) \in A_1 \} \) and \(\{ (\beta_1, \sigma_1) \in B_1, \ldots, (\beta_{n_1}, \sigma_{n_1}) \in B_{n_1} \} \) are independent from \(\Omega_2 \) and have positive probability, it follows that \(\mathcal{P}_X(\Omega_4) > 0 \).

\[\square\]

Appendix D. Proof of Theorem 6.6

Without loss of generality, assume that the covariate space X is $[\zeta, 1]^p$ for some $0 < \zeta < 1$. The proof is essentially along the lines of Theorem 3.2 of [5]. The \(\tilde{f} \) in (6.2) will be constructed so as to satisfy the assumptions of Lemma 6.4 and such that \(\int_X \int y f_0(y \mid x) \log \frac{f_0(y \mid x)}{f(y \mid x)} dy q(x) dx < \frac{\epsilon}{2} \) for any \(\epsilon > 0 \). Define a sequence of conditional densities \(f_n(y \mid x) = \int \frac{1}{\sigma} \phi \left(\frac{y-x}{\sigma} \right) dG_{n,x}(\beta, \sigma), n \geq 1 \) where for \(\sigma_n = n^{-\eta}, \)

\[
dG_{n,x}(\beta, \sigma) = \frac{I_{\beta_1 \in [-n,n]} f_0(x' \beta \mid x) \prod_{j=2}^p \delta_0(\beta_j) \delta_{\sigma_n}(\sigma)}{\int_{-n}^n f_0(x_1 \beta_1 \mid x) d\beta_1}. \tag{D.1}
\]

Define

\[
f_n(y \mid x) = \frac{\int_{-n}^{n} \frac{1}{\sigma_n} \phi \left(\frac{y-t}{\sigma_n} \right) f_0(t \mid x) dt}{\int_{-n}^{n} f_0(t \mid x) dt}. \tag{D.2}
\]

Proceeding as in Theorem 3.2 of [5], an application of DCT using the conditions A1-A5 yields

\[
\int_X \int y f_0(y \mid x) \log \frac{f_0(y \mid x)}{f_n(y \mid x)} dy q(x) dx \to 0 \text{ as } n \to \infty.
\]

Therefore one can simply choose \(\tilde{f} = f_{n_0} \) for sufficiently large \(n_0 \). \(f_{n_0} \) satisfies the assumptions of Lemma 6.4 since \(\{ G_{n_0,x}, x \in X \} \) is compactly supported. Also \(\{ G_{n_0,x}, x \in X \} \in \mathcal{G}_X^* \) as \(x \to G_{n_0,x}(A) \) is continuous. Hence there exists a finite intersection \(W \) of neighborhoods of \(\{ G_{n_0,x}, x \in X \} \) the type (6.5) such that for any \(\{ G_x, x \in X \} \in W, \) the second term of (6.2) is arbitrarily small. The conclusion of the theorem follows immediately from Corollary 6.7. \[\square\]
Appendix E. Proof of Theorem 6.9

Consider the sequence of sieves defined by (6.8) for given \(\varepsilon > 0 \) and for sequences \(a_n, h_n, l_n, M_n, m_n, r_n \) to be chosen later with \(\delta_n = K_1 \varepsilon / (M_n m_n^2) \) for some constant \(K_1 \). We will first show that given \(\xi > 0 \), there exists \(c_1, c_2 > 0 \) and sequences \(m_n \) and \(M_n \), such that \(\Pi_X(\mathcal{F}_n^c) \leq c_1 e^{-nc_2} \) and \(\log N(\delta, \mathcal{F}_n, \|\cdot\|) < n\xi \).

For \(f_1, f_2 \in \mathcal{F}_n \), we have for each \(x \in X \),

\[
\|f_1(\cdot | x) - f_2(\cdot | x)\|_1 \leq \int \sum_{h=1}^{m_n} \pi_h^{(1)}(x) \left| \phi_{\beta_h^{(2)}, \sigma_h^{(2)}}(x, y) - \phi_{\beta_h^{(2)}, \sigma_h^{(2)}}(x, y) \right| dy \\
+ \int \sum_{h=1}^{m_n} \pi_h^{(1)}(x) - \pi_h^{(2)}(x) \left| \phi_{\beta_h^{(2)}, \sigma_h^{(2)}}(x, y) \right| dy \\
+ \sum_{h=m_n+1}^{\infty} \left\{ \pi_h^{(1)}(x) + \pi_h^{(2)}(x) \right\} \\
\leq \int \sum_{h=1}^{m_n} \pi_h(x) \left\{ \left(\frac{2}{\pi} \right)^{1/2} \left| \beta_h^{(2)} - \beta_h^{(1)} \right| \sqrt{p} + \frac{3(\sigma_h^{(2)} - \sigma_h^{(1)})}{\sigma_h^{(1)}} \right\} \\
+ \sum_{h=1}^{m_n} \left\| \pi_h^{(1)} - \pi_h^{(2)} \right\|_{\infty} + 2\varepsilon.
\]

Let \(\Theta_{\pi,n} = \{ \pi_m^{(1)} = (\pi_1, \pi_2, \ldots, \pi_m) : \alpha_h \in B_{h,n}, h = 1, \ldots, m_n \} \). Fix \(\pi_1^{m_n}, \pi_2^{m_n} \in \Theta_{\pi,n} \). Note that since \(|\Phi(x_1) - \Phi(x_2)| < K_2 |x_1 - x_2| \) for a global constant \(K_2 > 0 \), we have

\[
\|\Phi(\alpha_{h,1}) - \Phi(\alpha_{h,2})\|_{\infty} \leq K_2 \|\alpha_{h,1} - \alpha_{h,2}\|_{\infty}.
\]

The above fact together with the proof of Lemma Appendix B.1 show that if we can make \(\|\alpha_{h,1} - \alpha_{h,2}\|_{\infty} < \frac{1}{m_n^2}, h = 1, \ldots, m_n \), we would have \(\sum_{h=1}^{m_n} \left\| \pi_h^{(1)} - \pi_h^{(2)} \right\|_{\infty} < \varepsilon \). From the proof of Theorem 3.1 in [37] it follows that for \(h = 1, \ldots, m_n^2 \) and for sufficiently large \(M_n, r_n \),

\[
\log N(2\varepsilon/m_n^2, B_{h,n}, \|\cdot\|) \leq K_3 r_n^p \log \left(\frac{M_n m_n^2 \sqrt{r_n/\delta_n}}{\varepsilon} \right)^{p+1} + 2 \log \frac{K_4 M_n m_n^2}{\varepsilon}.
\]
for global constants $K_3, K_4 > 0$. For $M_n^2 > 16K_5r_n^p (\log(r_n/\epsilon))^{1+p}, r_n > 1$ we have for $h = 1, \ldots, m^n_\eta$,

$$P(\alpha_h \notin B_{h,n}) \leq P(A_h > r_n) + e^{-M_n^2/2}. \quad (E.2)$$

Hence for sufficiently large M_n, we have for $h = m^n_\eta + 1, \ldots, m_n$,

$$\log N(3\epsilon/m_n^2, B_{h,n}, \|\cdot\|_{\infty}) \leq 2 \log \frac{K_4M_nm_n^2}{\epsilon}. \quad (E.3)$$

For $h = m^n_\eta + 1, \ldots, m_n$,

$$P(\alpha_h \notin B_{h,n}) \leq P(A_h > \delta_n) + \int_{a=0}^{\delta_n} P(\alpha_h \notin B_{h,n} \mid A_h = a)g_{A_h}(a)da$$

$$\leq P(A_h > \delta_n) + \int_{a=0}^{\delta_n} P(\alpha_h \notin M_nB_{\eta} + \epsilon B_1 \mid A_h = a)g_{A_h}(a)da$$

$$\leq P(A_h > \delta_n) + (1 - \Phi^{-1}(e^{-\phi_0^\eta(\epsilon/m_n^2)} + M_n)).$$

where $\phi_0^\eta(\epsilon)$ denotes the concentration function of the Gaussian process with covariance kernel $c(x, x') = \tau^2 e^{\frac{-\kappa^0\|x - x'\|^2}{2}}$. Now

$$\phi_0^\eta(\epsilon/m_n^2) \leq -\log P(|W_0| \leq \epsilon/m_n^2) = K_0 |\log(\epsilon/m_n^2)|$$

for some constant $K_0 > 0$. Hence if $M_n \geq K_7 |\log(\epsilon/m_n^2)|$ for some $K_7 > 0$, then it follows from the proof of Theorem 3.1 in [37] that

$$P(\alpha_h \notin B_{h,n}) \leq P(A_h > \delta_n) + e^{-M_n^2/2}. \quad (E.4)$$

From (E.1) and (E.3),

$$\log(N(\epsilon, B_{1,n} \times \cdots \times B_{m_n,n}, \|\cdot\|_{\infty}) \leq 2m_n \log \frac{K_4M_nm_n^2}{\epsilon} + m^n_\eta r_n^p \log \left(\frac{M_nm_n^2 \sqrt{r_n/\delta_n}}{\epsilon}\right)^{p+1}. \quad (E.5)$$

Also from (E.2) and (E.4),

$$\sum_{h=1}^{m_n} P(\alpha_h \notin B_{h,n}) \leq m_n e^{-M_n^2/2} + \sum_{h=1}^{m^n_\eta} P(A_h > r_n) + \sum_{h=m^n_\eta+1}^{m_n} P(A_h > \delta_n).$$
We will show that with \(m_n = O(\frac{n}{\log n}) \), \(\Pi_X(F_n^c) < e^{-n\xi_0} \) for some \(\xi_0 \). By assumption C1, we have

\[
\Pi_X(\Theta_{a_n,h_n,l_n}^c) \lesssim m_n O(e^{-n}) \lesssim O(e^{-n}). \tag{E.6}
\]

With \(m_n = O(n/\log n) \), \(\sum_{h=1}^{m_n} P(A_h > r_n) \leq m_ne^{-n} \lesssim e^{-n}, \sum_{h=m_n+1}^{\infty} P(A_h > \delta_n) \leq (m_n - m_n)e^{-\eta_0(m_n)^{\frac{u+2}{\log m_n}}} \lesssim e^{-m_n \log m_n} \).

With \(m_n = \frac{n}{\log n} \), \(m_n \log m_n > \frac{n}{2} \) for large enough \(n \) and it follows from Lemma 6.14 that

\[
\Pi_X \left(\sup_{x \in X} \sum_{h=m_n+1}^{\infty} \pi_h(x) > \epsilon \right) \lesssim O(e^{-n/2}). \tag{E.7}
\]

Thus with \(M_n = O(n^{1/2}) \),

\[
\sum_{h=1}^{m_n} P(\alpha_h \not\in B_{h,n}) \lesssim e^{-n}. \tag{E.8}
\]

(E.6), (E.7) and (E.8) together imply that \(\Pi_X(F_n^c) \lesssim O(e^{-n}). \)

Also \(m_n^\eta r_n^p \log \left(\frac{M_n \sqrt{r_n/\delta_n}}{\epsilon} \right)^{p+1} = o(n) \) for the choice of the sequence \(r_n \).

With \(m_n = n/(C \log n) \) for some large \(C > 0 \), one can make

\[
\log(N(\epsilon, B_1, \ldots, B_{m_n}, \|\cdot\|_\infty) < n\xi \tag{E.9}
\]

for any \(\xi > 0 \). Also from Lemma 6.13,

\[
m_n \log N(\Theta_{a_n,h_n,l_n}, \epsilon, \|\cdot\|_\infty) \leq m_n \log \left\{ d_1 \left(\frac{a_n}{l_n} \right)^p + d_2 \log \frac{h_n}{l_n} + 1 \right\} < n\xi \tag{E.10}
\]

for any \(\xi > 0 \). Combining (E.9) and (E.10), \(\log N(F_n, 4\epsilon, \|\cdot\|_1) < n\xi \) for any \(\xi > 0 \).

\[\square\]

Appendix F. Another useful lemma

Lemma Appendix F.1. For non-negative r.v.s \(A_i, B_i \), if \(P(A_i \leq u) \leq C_1 P(B_i \leq u) \) for \(u \in (0, t_0), t_0 > 0, i = 1, 2, P(A_1 + A_2 \leq t_0) \leq C_1 C_2 P(B_1 + B_2 \leq t_0) \).
Proof. Denote by f the corresponding density functions.

$$
P(A_1 + A_2 \leq t_0) = \int_0^{t_0} f_{A_1}(u) P(A_2 \leq t_0 - u) \leq C_2 \int_0^{t_0} f_{A_1}(u) P(B_2 \leq t_0 - u)
$$

$$
= C_2 P(A_1 + B_2 \leq t_0) = C_2 \int_0^{t_0} f_{B_2}(u) P(A_1 \leq t_0 - u)
$$

$$
\leq C_1 C_2 \int_0^{t_0} f_{B_2}(u) P(B_1 \leq t_0 - u) = C_1 C_2 P(B_1 + B_2 \leq t_0).
$$

\[\square\]

Appendix G. Proof of Theorem 7.1

Proof. Once again we approximate $f_0(y \mid x)$ by $\tilde{f}(y \mid x) = \int \frac{1}{\sigma} \phi(\frac{y-\mu}{\sigma}) d\tilde{G}_x(\mu, \sigma)$, so that the first term of 6.2 is arbitrarily small. We construct such an \tilde{f} analogous to that in Theorem 6.2. Lemma Appendix G.1 is a variant of Lemma 6.4 which ensures that the second term in (6.2) is also sufficiently small. Before that we need a different notion of neighborhood of $\{F_x, x \in X\}$ which we formulate below.

$$
\left\{\{G_x, x \in X\} : \sup_{x \in X} \left| \int_{\mathbb{R} \times \mathbb{R}^+} \{g(\mu, \sigma) dG_x(\mu, \sigma) - g(\mu, \sigma) dF_x(\mu, \sigma)\} \right| < \epsilon \right\}. \quad (G.1)
$$

Lemma Appendix G.1. Assume that $f_0 \in F_d$ satisfies $\int_X \int_Y y^2 f_0(y \mid x) dy q(x) dx < \infty$. Suppose $\tilde{f}(y \mid x) = \int \frac{1}{\sigma} \phi(\frac{y-\mu}{\sigma}) d\tilde{G}_x(\mu, \sigma), \text{ where } \exists a > 0 \text{ and } 0 < \sigma < \overline{\sigma} \text{ such that}

$$
\tilde{G}_x([-a, a] \times (\sigma, \overline{\sigma})) = 1 \forall x \in X,
$$

so that \tilde{G}_x has compact support for each $x \in X$. Then given any $\epsilon > 0$, \exists a neighborhood W of $\{G_x, x \in X\}$ which is a finite intersection of neighborhoods of the type (G.1) such that for any conditional density $f(y \mid x) = \int \frac{1}{\sigma} \phi(\frac{y-\mu}{\sigma}) dG_x(\mu, \sigma), x \in X, \text{ with } \{G_x, x \in X\} \in W$,

$$
\int_X \int_Y f_0(y \mid x) \log \frac{\tilde{f}(y \mid x)}{f(y \mid x)} dy q(x) dx < \epsilon. \quad (G.3)
$$

The proof of Lemma Appendix G.1 is similar to that of Lemma 6.4 and is omitted here. To characterize the support of P_X, we define a collection of
fixed conditional probability measures \(\{F_x, x \in \mathcal{X}\} \) on \((\mathbb{R} \times \mathbb{R}^+, \mathcal{B}(\mathbb{R} \times \mathbb{R}^+))\) denoted by \(G_{\mathcal{X}}^{**}\) satisfying \(x \mapsto \int_{\mathbb{R} \times \mathbb{R}^+} g(\mu, \sigma) dF_x(\mu) \) is a continuous function of \(x \) for all bounded uniformly continuous functions \(g : \mathbb{R} \times \mathbb{R}^+ \to [0, 1] \).

Theorem Appendix G.2. Assume the following holds.

T1. \(G_0 \) is specified by \(\mu_h \sim \text{GP}(\mu, c), \sigma_h \sim \text{G}_{0,\sigma} \) where \(c \) is chosen so that \(\text{GP}(0, c) \) has continuous path realizations and \(\Pi_{\sigma} \) is absolutely continuous w.r.t. Lebesgue measure on \(\mathbb{R}^+ \).

T2. For every \(k \geq 2 \), \((\pi_1, \ldots, \pi_k) \) is absolutely continuous w.r.t to the Lebesgue measure on \(S_{k-1} \).

T3. For any continuous function \(g : \mathcal{X} \to \mathbb{R} \),

\[
\mathcal{P}_X \left\{ \sup_{x \in \mathcal{X}} |\mu_h(x) - g(x)| < \epsilon \right\} > 0
\]

\(h = 1, \ldots, \infty \) and for any \(\epsilon > 0 \).

Then for a bounded uniformly continuous function \(g : \mathbb{R} \times \mathbb{R}^+ : [0, 1] \) satisfying \(g(\mu, \sigma) \to 0 \) as \(|\mu| \to \infty, \sigma \to \infty \),

\[
\mathcal{P}_X \left\{ \left\{ G_x, x \in \mathcal{X} \right\} : \sup_{x \in \mathcal{X}} \left| \int_{\mathbb{R} \times \mathbb{R}^+} \left\{ g(\mu, \sigma) dG_x(\mu, \sigma) - g(\mu, \sigma) dF_x(\mu, \sigma) \right\} \right| < \epsilon \right\} > 0 \tag{G.4}
\]

Proof. It suffices to assume that \(g \) is is coordinatewise monotonically increasing on \(\mathbb{R} \times \mathbb{R}^+ \). Let \(\epsilon > 0 \) be given and \(\psi(x) = \int_{\mathbb{R} \times \mathbb{R}^+} g(\mu, \sigma) dF_x(\mu, \sigma) \).

Let \(n_\epsilon \) be such that \(\mathcal{P}_X(\Omega_1) > 0 \) where \(\Omega_1 = \{ \sum_{h=n_\epsilon+1}^\infty \pi_h < \epsilon \} \). Then in \(\Omega_1 \),

\[
\left| \int_{\mathbb{R} \times \mathbb{R}^+} \left\{ g(\mu, \sigma) dG_x(\mu, \sigma) - \psi(x) \right\} \right| \leq \sum_{k=1}^{n_\epsilon} \pi_k |g(\mu_k(x), \sigma_k) - \psi(x)| + \epsilon.
\]

Define \(\Omega_2 = \{ \sup_{x \in \mathcal{X}} |g(\mu_k(x), \sigma_k) - \psi(x)| < \epsilon, k = 1, \ldots, n_\epsilon \} \). For a fixed \(\sigma_k \), there exists a \(\delta \) such that \(\sup_{x \in \mathcal{X}} |g(\mu_k(x), \sigma_k) - \psi(x)| < \epsilon/2 \) if \(\sup_{x \in \mathcal{X}} |\mu_k(x) - g^{-1}_{\sigma_k}(\psi(x))| < \delta \) where \(g^{-1}_{\sigma_k} \) denotes the inverse of \(g(\cdot, \sigma_k) \) for fixed \(\sigma_k \). Hence there exists a neighborhood \(B_k \) of \(\sigma_k \) such that for \(\sigma_k \in B_k \) and \(\sup_{x \in \mathcal{X}} |\mu_k(x) - g^{-1}_{\sigma_k}(\psi(x))| < \delta \), we have \(\sup_{x \in \mathcal{X}} |g(\mu_k(x), \sigma_k) - \psi(x)| < \epsilon \). Since for each \(k = 1, \ldots, n_\epsilon \), \(\mathcal{P}_X \left\{ \sigma_k \in B_k, \sup_{x \in \mathcal{X}} |\mu_k(x) - g^{-1}_{\sigma_k}(\psi(x))| < \delta \right\} \)

\[
\int_{\sigma_k \in B_k} \mathcal{P}_X \left\{ \sup_{x \in \mathcal{X}} |\mu_k(x) - g^{-1}_{\sigma_k}(\psi(x))| < \delta \right\} dG_{0,\sigma}(\sigma_k) > 0,
\]

29
of \(\Omega_2\) \(> 0\). The conclusion of the theorem follows from the independence of \(\Omega_1\) and \(\Omega_2\).

\(\tilde{f}\) in (6.2) will be constructed so as to satisfy the assumptions of Lemma Appendix G.1 and such that \(\int_X \int_Y f_0(y \mid x) \log \frac{f_0(y \mid x)}{f_y(x)} dy dq(x) dx < \frac{\epsilon}{2} \) for any \(\epsilon > 0\). Define a sequence of conditional densities \(f_n(y \mid x) = \int \frac{1}{\sigma} \phi(\frac{y - \mu}{\sigma}) d\tilde{G}_{n,x}(\mu, \sigma), n \geq 1\) where for \(\sigma_n = n^{-\eta},\)

\[
dG_{n,x}(\mu, \sigma) = \frac{I_{\mu|[-n,n]} f_0(\mu \mid x) \delta_{\sigma_n}(\sigma)}{\int_{-n}^n f_0(\mu \mid x)}.
\]

As before define the approximator

\[
f_n(y \mid x) = \frac{\int_{-n}^n \frac{1}{\sigma_n} \phi(\frac{y - t}{\sigma_n}) f_0(t \mid x) dt}{\int_{-n}^n f_0(t \mid x) dt}.
\]

\(f_n\) will be chosen to be \(f_{n_0}\) for some large \(n_0\). \(f_{n_0}\) satisfies the assumptions of Lemma Appendix G.1 since \(\{G_{n_0,x}, x \in X\}\) is compactly supported. Moreover \(\{G_{n_0,x}, x \in X\} \in G_{\mathcal{X}}^2\) as \(x \to \int_{\mathbb{R} \times \mathbb{R}^+} g(\mu, \sigma) dG_{n_0,x}(\mu, \sigma)\) is continuous function of \(x\) for all bounded uniformly continuous function \(g\). Hence there exists a finite intersection \(W\) of neighborhoods of \(\{G_{n_0,x}, x \in X\}\) the type (G.1) such that for any \(\{G_{x}, x \in X\} \in W\), the second term of (6.2) is arbitrarily small. The conclusion of the theorem follows immediately from a variant of Corollary 6.7 applied to neighborhoods of the type (G.1). \(\square\)

Appendix H. Proof of Theorem 7.3

Proof. As before we establish \(q\)-integrated \(L_1\) consistency of Gaussian mixtures of fixed-\(\pi\) dependent processes by verifying the conditions of Theorem 6.8. Let \(\phi_{\mu,\sigma}(x, y) := \frac{1}{\sigma} \phi(\frac{y - \mu(x)}{\sigma})\) for \(y \in \mathcal{Y}\) and \(x \in \mathcal{X}\). From Lemma 4.1 of [5], we obtain for \(\sigma_2 > \sigma_1 > \frac{\sigma_2}{2}\) and for each \(x \in \mathcal{X},\)

\[
\int_{\mathcal{Y}} |\phi_{\mu_1,\sigma_1}(x, y) - \phi_{\mu_2,\sigma_2}(x, y)| dy \leq \left(\frac{2}{\pi}\right)^{1/2} \left\|\mu_1 - \mu_2\right\|_\infty + \frac{3(\sigma_2 - \sigma_1)}{\sigma_1}
\]

Let \(\mu_h(x) = x^t \beta_h + \eta_h(x), h = 1, 2, \ldots, \beta_h \sim G_\beta\) where \(G_\beta\) is a probability distribution on \(\mathbb{R}^p\). Let \(\eta_h \sim GP(0, c)\) independently where \(c(x, x') = \tau^2 e^{-A \|x - x'\|^2}\), where \(A\) is a distributed with support \(\mathbb{R}^+\) and \(\tau^2\) is fixed. Assume that \(\sigma_h \sim G_{0,\sigma}\) where \(G_{0,\sigma}\) is a distribution on \(\mathbb{R}^+\). Here \(G_{0x}\) is
a distribution on \(\mathbb{R} \times \mathbb{R}^+ \) induced from the distribution of \((\mu_h(x), \sigma_h^2)\). For any pair \(\mu_1, \mu_2\),
\[
\|\mu_1 - \mu_2\|_\infty \leq \left(\frac{2}{\pi}\right)^{1/2} \frac{\|\beta_1 - \beta_2\|}{\sigma_2} \sqrt{n} + \|\eta_1 - \eta_2\|_\infty .
\]
As before, let \(\mathbb{H}_1^q\) denote a unit ball in the RKHS of the covariance kernel \(\tau^2 e^{-a\|x-x'\|^2}\) and \(\mathbb{B}_1\) is a unit ball in \(\mathbb{C}[0,1]^p\). For sequences \(M_n \uparrow \infty, l_n \downarrow 0, r_n \uparrow \infty\) to be determined later and given \(\epsilon > 0\) construct \(B_n\) as
\[
B_n = \left(M_n \sqrt{\frac{\tau_n}{\delta_n}} \mathbb{H}_1^q + \frac{\epsilon_l n \sqrt{\pi}}{4\sqrt{2}} \mathbb{B}_1 \right) \cup \left(\bigcup_{a < \delta_n} M_n \mathbb{H}_1^q + \frac{\epsilon_l n \sqrt{\pi}}{4\sqrt{2}} \mathbb{B}_1 \right).
\]
with \(\delta_n = \frac{K_1 \epsilon_l n}{M_n}\) for some constant \(K_1 > 0\). Let
\[
\Theta_n = \{ \phi_{\mu,\sigma} : \|\beta\| \leq a_n, \eta \in B_n, l_n \leq \sigma \leq h_n \} . \tag{H.1}
\]
In the following Lemma, we provide an upper bound to \(N(\Theta_n, \epsilon, \|\cdot\|_1)\).

Lemma Appendix H.1. There exists constants \(d_1, d_2, K_2, K_3 > 0\) such that for \(M_n \sqrt{r_n/\delta_n} > 2\epsilon\) and for sufficiently large \(r_n\)
\[
\log N(\Theta_n, \epsilon, d_{SS}) \leq K_2 n \left\{ \log \left(\frac{8\sqrt{2} M_n \sqrt{r_n/\delta_n}}{\epsilon \sqrt{\pi} n} \right) \right\}^{p+1} + \log \frac{K_3 M_n}{\epsilon l_n} + \log \left\{ d_1 \left(\frac{a_0}{l_n} \right)^p + d_2 \log \frac{h_n}{l_n} + 1 \right\} .
\]

Proof. We have \(\Theta_n \subset \{ \phi_{\mu,\sigma} | \beta \in (-a_n \sqrt{\pi}, a_n \sqrt{\pi})^p, \eta \in B_n, h_n \leq \sigma \leq l_n \}\). Let \(\kappa < \min(\frac{1}{6}, 1)\) and \(\sigma_m = l_n (1 + \kappa)^m, m \geq 0\). Let \(m_0\) be the smallest integer such that \(\sigma_{m_0} = l_n (1 + \kappa)^{m_0} > h\). This implies \(m_0 \leq (1 + \kappa)^{-1} \log \frac{h_n}{l_n} + 1\). By the choice of \(\sigma_m, m \geq 1, \frac{3(\sigma_m - \sigma_{m-1})}{\sigma_{m-1}} < \frac{\epsilon}{2}\). Let \(N_j = \left\lfloor \left(\frac{128}{\pi} \right)^{1/2} a_n n \sqrt{\pi} \right\rfloor / \sigma_{j-1} \epsilon\). For each \(1 \leq j \leq m_0\), construct a \(\frac{\epsilon \sqrt{\pi} \sigma_{j-1}}{4\sqrt{2}}\)-covering \(\{A_{kj}, k = 1, \ldots, M_j\}\) of \(B_n\) with
\[
M_j = N(\frac{\epsilon \sqrt{\pi} \sigma_{j-1}}{4\sqrt{2}}, B_n, \|\cdot\|_\infty) \leq \exp \left[K_{2p} n \left\{ \log \left(\frac{8\sqrt{2} M_n \sqrt{r_n/\delta_n}}{\epsilon \sqrt{\pi} \sigma_{j-1}} \right) \right\}^{p+1} \log \frac{K_3 M_n}{\epsilon l_n} \right].
\]
for some constants \(K_2, K_3 > 0\). For \(1 \leq i \leq N_j, 1 \leq k \leq M_j\ & 1 \leq j \leq m_0\), define
\[
E_{ikj} = \left(-a_n' + \frac{2a_n'(i-1)}{N_j}, -a_n' + \frac{2a_n' i}{N_j} \right) \times A_{kj} \times (\sigma_{j-1}, \sigma_j) \tag{H.2}
\]
where \(a'_n = a_n \sqrt{p} \). We have for \((\beta, \eta, \sigma), (\beta', \eta', \sigma') \in E_{ikj}\) and for each \(x \in \mathcal{X} \),

\[
\| \phi_{\mu, \sigma}(x, \cdot) - \phi_{\mu', \sigma'}(x, \cdot) \|_1 \leq \left(\frac{2}{\pi} \right)^{1/2} \frac{\|\beta - \beta'\| \sqrt{p} + \|\eta - \eta'\|_\infty}{\sigma_2} + \epsilon
\]

\[
\leq \left(\frac{2}{\pi} \right)^{1/2} \left(\frac{2a_n p \sqrt{p} + \epsilon \sqrt{\pi}}{\sigma_{j-1} N_j} + \frac{\epsilon}{4 \sqrt{2}} + \left(\frac{a_n p \sqrt{p} + \epsilon \sqrt{\pi}}{\pi \sigma_j} - 1 \right) N_j + \epsilon \right)
\]

Thus

\[
N(\Theta_n, \epsilon, \| \cdot \|) \leq \sum_{j=1}^{m_0} \left\{ \left(\frac{128}{\pi} \right)^{1/2} \left(\frac{a_n p \sqrt{p}}{\sigma_{j-1}} + 1 \right)^p \times \exp \left\{ K_2 p_n \log \left(\frac{8 \sqrt{2} M_n \sqrt{\tau_n / \delta_n}}{\epsilon \sqrt{\pi} \sigma_{j-1}} \right)^{p+1} \right\} \log \left(K_3 M_n / \epsilon_n \right) \right\}
\]

\[
\leq \exp \left[K_2 p_n \left\{ \log \left(\frac{8 \sqrt{2} M_n \sqrt{\tau_n / \delta_n}}{\epsilon \sqrt{\pi} \ell_n} \right)^{p+1} \right\} \log \left(K_3 M_n / \epsilon \right) \right] \times \left\{ d_1 \left(\frac{a_n}{\ell_n} \right)^p + d_2 \log \left(\frac{\ell_n}{\ell_n} + 1 \right) \right\}.
\]

The rest of the proof follows similar to that of Theorem 6.9. Consider the sequence of sieves defined by

\[
\mathcal{F}_n = \left\{ f : f(y \mid x) = \sum_{h=1}^{\infty} \pi_h \frac{1}{\sigma_h} \phi \left(\frac{y - \mu_h(x)}{\sigma_h} \right), \{ \phi_{\mu_h, \sigma_h} \}_{h=1}^{m_n} \in \Theta_n, \sup_{x \in \mathcal{X}} \sum_{h=\ell_n m_n+1}^{m_n} \pi_h \leq \epsilon \right\}.
\]

We will show that given any \(\xi > 0 \), there exists a \(c_1, c_2 > 0 \) such that \(\Pi_X(\mathcal{F}_n^{c_2}) \leq c_1 e^{-n c_2} \) and \(\log(\delta, \mathcal{F}_n, \| \cdot \|) < n \xi \). For \(f_1, f_2 \in \mathcal{F}_n \), we have

\[
\| f_1(\cdot \mid x) - f_2(\cdot \mid x) \|_1 \leq \int_\mathcal{Y} \left| \sum_{h=1}^{m_n} \pi_h^{(1)} \phi_{\mu_h^{(1)}, \sigma_h^{(1)}}(x, y) - \pi_h^{(2)} \phi_{\mu_h^{(2)}, \sigma_h^{(2)}}(x, y) \right| dy
\]

\[
\leq \sum_{h=1}^{m_n} \pi_h^{(1)} \int_\mathcal{Y} \left| \phi_{\mu_h^{(1)}, \sigma_h^{(1)}}(x, y) - \phi_{\mu_h^{(2)}, \sigma_h^{(2)}}(x, y) \right| dy + \sum_{h=1}^{m_n} \left| \pi_h^{(1)} - \pi_h^{(2)} \right| + 2 \epsilon.
\]
Let $\Theta_{\pi,n} = \{ \pi^{m_n} = (\pi_1, \pi_2, \ldots, \pi_{m_n}) : \nu_h, h = 1, \ldots, m_n \in [0,1] \}$. Fix $\pi_1^{m_n}, \pi_2^{m_n} \in \Theta_{\pi,n}$. It is easy to see that if we can make $|\nu_{h,1} - \nu_{h,2}| < \frac{\epsilon}{m_n}, h = 1, \ldots, m_n$, we would have $\sum_{h=1}^{m_n} |\pi_h^{(1)} - \pi_h^{(2)}| < \epsilon$. Since $\nu_{h,1}, \nu_{h,2} \in [0,1]$, the number of balls required to cover $\Theta_{\pi,n}$ so that $\sum_{h=1}^{m_n} |\pi_h^{(1)} - \pi_h^{(2)}| < \epsilon$ is $K_4(m_n^2/\epsilon)^{m_n}$ for some constant $K_4 > 0$. Hence

$$\log N(\mathcal{F}_n, 4\epsilon, \|\cdot\|) \leq K_2 m_n r_n P \left\{ \log \left(\frac{8\sqrt{2}M_n \sqrt{\nu_h/\delta_n}}{\epsilon \sqrt{\pi l_n}} \right)^{p+1} + m_n \log \frac{K_4 m_n^2}{\epsilon} \right\}$$

$$m_n \log \frac{K_3 M_n}{\epsilon l_n} + m_n \log \left\{ d_1 \left(\frac{a_n}{l_n} \right)^p + d_2 \log \frac{h_n}{l_n} + 1 \right\}$$

(H.3)

Note that $\Pi_X(\mathcal{F}_n^c) \leq m_n P(\Theta_n^c) + P(\sum_{h=m_n}^{\infty} \pi_h > \epsilon)$ and $P(\Theta_n^c) \leq \{ P(\|\beta\| > a_n) + P(\sigma \in [l_n, h_n]^c) + P(\eta \in B_n^c) \}$. It follows from the proof of Theorem 3.1 of [37] that

$$P(\eta \in B_n^c) \leq P(A > r_n) + e^{-M_n^2/2}$$

if $M_n^2 > r_n^p \left\{ \log \left(\frac{8\sqrt{2}M_n \sqrt{\nu_h/\delta_n}}{\epsilon \sqrt{\pi l_n}} \right) \right\}$. Since $A^{(1+\eta_2)/\eta_2} \sim \text{Ga}(a, b)$, Lemma 4.9 of [37] indicates that $P(A > r_n) \lesssim \exp\{-r_n^{p(1+\eta_2)/\eta_2}\}$. Hence with $M_n = O(n^{1/2}), m_n = O\left\{ n/(\log n)^{p+1} \right\}^{1/(1+\eta_2)}$ and $r_n^p = O\left\{ n^{\eta_2/(1+\eta_2)} \right\}$, $P(\Theta_n^c) \lesssim e^{-n}$ and

$$P(\sum_{h=m_n}^{\infty} \pi_h > \epsilon) \lesssim \exp\{-m_n^{1+\eta_2}(\log m_n)^{(p+1)}\} \lesssim e^{-n}.$$

(H.4)

Also, the first term in the right hand side of (H.3) can be made smaller than $n \xi$ since $m_n r_n^p = O(n/(\log n)^{p+1})$. Also by F1, the last two terms of the right hand side of (H.3) can be made to grow at $o(n)$.

References

